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Reliability of transport, especially the ability to reach a destination within a certain amount 
of time, is a regular concern of travelers and shippers. The definition of reliability used in 
this research is how travel time varies over time. The variability can apply to the travel times 
observed over a road segment during a specific time slice (e.g., 3 to 6 p.m.) over a fairly long 
period of time, say a year. The variability can also pertain to the travel times of repeated trips 
made by a person or a truck between a given origin and destination. Agencies are increas-
ingly aware of the issue of reliability, although the transportation industry as a whole as yet 
lacks a firm understanding of the causes and solutions to failures of reliability. As the agenda 
for the SHRP 2 research on travel time reliability took shape, it became clear a fundamental 
study was required to be able to talk about travel time reliability in a meaningful way.

Basic reliability issues are addressed in this study, which is not concerned with average travel 
times, but rather ways of describing travel times that reflect the uncertainty in the amount 
of time required to travel between two points. Some of the uncertainty is systematic, such 
as the normal ebb and flow of traffic within the course of a work day or season of the year. 
Congestion associated with this systematic uncertainty is called recurrent. Congestion due 
to unpredictable or unexpected events is called nonrecurrent. Sources of nonrecurrent con-
gestion include incidents (e.g., accidents), work zones, weather, special events, problems 
with traffic control devices, and unexpected fluctuations in demand.

If every travel time observed over a highway section for a year is plotted, a distribution 
of travel time is obtained. This plotted distribution is the picture of travel time variability. 
Such distributions are the focus of this research, especially the degree to which recurring and 
nonrecurring congestion influence the nature of the distribution. This research shows how 
to derive performance measures from such distributions and recommends a set for use by 
managers, planners, and systems operators. The research reexamines the composition of the 
congestion puzzle in terms of the fractions attributable to recurrent and various sources of 
nonrecurrent congestion. The project team used before-and-after studies to determine the 
effectiveness of different types of actions, both operational and capacity improvements, in 
improving reliability. This study also examined the effect of the downturn of the economy 
on travel time reliability. Finally, this research resulted in two types of models that can be 
used to estimate or predict travel time reliability. These models have broad applicability to 
planning, programming, and systems management and operations.

F O R E W O R D
William Hyman, SHRP 2 Senior Program Officer, Reliability
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Project Background

The fundamental objective of SHRP 2 Project L03 was to develop predictive relationships 
between highway improvements and travel time reliability. In other words, how can the effect of 
an improvement on reliability be predicted? Alternatively, how can reliability be characterized as 
a function of highway, traffic, and operating conditions? A variety of challenging issues have been 
confronted in addressing this objective.

Significance of Travel Time Reliability  
in Transportation System Performance

Reliability is important to travelers and transportation practitioners for a variety of reasons:

•	 From an economic perspective, reliability is highly important because travelers must either bud-
get extra time for their trips to avoid arriving late or suffer the consequences of being late. This 
extra time has value beyond the average travel time used in traditional economic analyses. Recent 
work has documented that reliability has value to travelers and influences their behavior (1, 2).

•	 Because of the extra time required in planning trips and uncertainty about the amount of time 
actually needed for a trip, reliability influences decisions about where, when, and how travel 
is made.

•	 Transportation planners and operators need to include the extra economic cost of unreliable 
travel on users in project planning, programming, and selection processes. This is particularly 
true of strategies that deal directly with roadway events (e.g., incidents). In the past, most 
assessments of these types of strategies have missed this important aspect of travel.

New Concept of Travel Time Reliability

Although use of travel time–based performance measures in planning and operations applica-
tions has taken on greater significance in the past few years, travel time reliability—how consis-
tent (or variable) travel conditions are from day to day—is a relatively new concept to which 
much of the transportation profession has had only limited exposure. Congestion has been 
growing nationwide, and planners increasingly have become involved in short-term activities 
such as performance monitoring, as well as operations and management strategies. These activ-
ities have been elevated in importance by transportation agencies in order to be responsive to the 
demands of the public and state legislatures. Anecdotal reports and technical studies indicate 
that average congestion levels have grown, and continue to grow, in our cities.

However, talking about typical or average conditions in a transportation system that experi-
ences wide performance fluctuations tells only part of the story. The notion of travel time 

Executive Summary
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reliability has taken on increasing importance as variation in travel times is now understood as 
a separate component of the public’s and business sector’s frustration with congestion problems. 
Reliability is a major part of system performance and of travelers’ perceptions of performance. 
It has not been widely used to describe performance, but increasingly agencies are recognizing 
its value in assessing their own performance and in communicating performance to the public.

Defining Travel Time Reliability

The Future Strategic Highway Research Program (F-SHRP) defined highway travel time vari-
ability as synonymous with reliability:

. . . from a practical standpoint, travel-time reliability can be defined in terms of how travel times vary 
over time (e.g., hour-to-hour, day-to-day). This concept of variability can be extended to any other 
travel-time-based metrics such as average speeds and delay. For the purpose of this study, travel time 
variability and reliability are used interchangeably. (3)

A slightly different view of reliability is based on the notion of the probability of failure, which 
is often used to characterize industrial processes. With this view, failure is defined in terms of 
travel times, and the number of times a given threshold is not achieved or exceeded can be counted.

In recent years, some non-U.S. reliability research has defined the probability of failure in terms 
of traffic flow breakdown. A corollary concept, vulnerability, is a measure of how vulnerable the 
network is to breakdown conditions. This concept can be applied at the link or network level.

Understanding Travel Time Reliability

To understand travel time reliability, it is essential to understand the factors that cause travel 
times to be unreliable. L03 research built on what the original F-SHRP Reliability Research Plan 
identified as seven sources of congestion that cause travel times to be unreliable and contribute 
to total congestion: incidents, inclement weather, work zones, special events, traffic control 
device timing, demand fluctuations, and inadequate base capacity. These categories were devel-
oped to move away from the more general recurring–nonrecurring nomenclature.

Operational Strategies and Capacity Expansion

This project studied operational strategies and capacity expansion projects, both of which were 
expected to affect reliability. Many operational strategies are aimed specifically at the factors that 
cause unreliable travel (e.g., incident management, work zone management). It is generally 
expected that adding capacity will affect reliability.

Travel Time Measurements

Travel time is the starting point for sound congestion measurement because it reflects the actual 
experience of system users. When measured directly, it is independent of theoretical capacity 
concerns, such as what happens in oversaturated conditions. Further, once travel time is obtained, 
a whole family of additional measures can be created using basic information (e.g., volume, free-
flow speed) about the system. Delay is one example of the metrics that naturally derives from 
travel time measurements.

Project Approach

Data Collection

The research team undertook an empirical approach based on their familiarity with the data 
used to characterize congestion and reliability and the sufficient quality and amount of data 
available. Reliability can only be characterized by a long history of travel times, and the use of 
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automated equipment is the only feasible method of data collection. Because of the cost of col-
lecting new data, the team relied on data already being collected by transportation agencies, 
primarily in support of operations programs.

Figure ES.1 shows the distribution of travel times along a section of highway. This distribu-
tion, and the statistics that describe it, are the basis for research. The statistics superimposed on 
the distribution in the figure represent the reliability metrics used in the research. P10, P90, and 
P95 are the 10th, 90th, and 95th percentiles, respectively, of the distribution. The remaining 
metrics are defined elsewhere in this report.

A very large data set (Figure ES.2), most of which covered urban freeways, was assembled from 
various traffic management centers (Tables ES.1 through ES.3). A separate data set for urban 
freeways was compiled for the Seattle area for the congestion by source analysis.

Data on the basic characteristics of incidents were available from three sources and were used 
to varying degrees, depending on the team’s assessment of the data sources for each city’s situa-
tion. Incident data were available from a private vendor, Traffic.com. Incident and event data were 
provided to the project team by Traffic.com at no cost from their traveler information manage-
ment system. This system provided a standardized source of information for traffic incidents, 

Figure ES.1. Reliability is defined by how travel times vary.

Figure ES.2. The analysis data set fused data from a variety of sources.

http://www.Traffic.com
http://www.Traffic.com
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events, scheduled and unscheduled construction, and other events that could affect traffic condi-
tions (e.g., severe weather or transit delays). Weather data consisting of hourly weather observa-
tions (e.g., precipitation, temperature, wind, fog) at multiple points within the urban areas were 
obtained from the National Climatic Data Center of the National Oceanic and Atmospheric 
Administration. Geometric data were obtained from satellite imagery (lane configurations) and 
the 2007 Highway Performance Monitoring data. Operating and improvement data were 
obtained directly from state departments of transportation. The most important data in this 
category were those elements related to calculating capacity for each individual link.

Table ES.1. Urban Freeway Study Section Summary

City
Number of Directional  

Study Sections
Total Directional 

Mileage

Houston, Texas 13 58.80

Minneapolis, Minnesota 16 62.63

Los Angeles, California 3 50.27

San Francisco Bay Area, California 4 19.98

San Diego, California 6 28.04

Atlanta, Georgia 10 54.66

Jacksonville, Florida 8 17.71

Total 60 292.09

Table ES.2. Signalized Arterial Study Sections

Travel Time Data

City Arterial From To Length (mi) Data Technology Period

Orlando,  
Florida

Section 1: SR 50  
eastbound

Florida Turnpike SR 408 West 6.85 Tag-based probe March 2008+

Section 2: SR 50  
westbound

SR 408 West Florida Turnpike 6.85 Tag-based probe March 2008+

Section 3: U.S. 441 
northbound

SR 417 SR 408 10.67 Tag-based probe March 2008+

Section 4: U.S. 441 
southbound

SR 408 SR 417 10.67 Tag-based probe March 2008+

Section 5: U.S. 441 
northbound

SR 408 N. John Young 
Parkway

4.35 Tag-based probe March 2008+

Section 6: U.S. 441 
southbound

N. John Young Parkway SR 408 4.35 Tag-based probe March 2008+

Los Angeles, 
California

Santa Monica Boulevard I-405 N. Gardner Street 6.9 GPS probe (Inrix) 2006–2007

Phoenix,  
Arizona

E. Camelback Road 44th Street Highway 51 4.2 GPS probe (Inrix) 2006–2007

Minneapolis, 
Minnesota

Washington Avenue County Highway 153 U.S. 65 3.4 GPS probe (Inrix) 2006–2007

Miami, Florida U.S. 1 17th Avenue Le Jeune Road 3.8 GPS probe (Inrix) 2006–2007

Houston, Texas Westheimer Road W. Sam Houston I-610 6.9 GPS probe (Inrix) 2006–2007

Note: GPS = global positioning system. Probe tag technology provides direct estimates of travel time over the segment.
Inrix-provided data are supplied as speed estimates by link (approximately 0.5- to 1-mile long). Only the Orlando sections were used in the analysis because of sample 
size limitations on the other sections.
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Analysis Approach

The analysis was based on a conceptual model previously developed by members of the research 
team (Figure ES.3). As the model indicates, the sources of congestion interact to produce total 
congestion. Reliability, an aspect of total congestion, is greatly influenced by the complex inter-
actions of traffic demand, physical capacity, and roadway events.

The analysis proceeded with four tracks:

1. Exploratory analysis, which was used to improve the understanding of reliability and establish 
many of the research parameters;

2. Before-and-after studies on selected study sections that resulted in empirical measurements 
of the change in reliability;

3. Cross-sectional statistical modeling, which was used to develop statistically based predictive 
models of reliability as a function of traffic, operating, and geometric conditions. The cross-
sectional modeling was extremely important because it allowed a study of all of the possible 
improvement types in the field using a before-and-after approach; and

4. Congestion by source analysis, which was a microlevel approach to separating daily congestion 
into its component sources.

Table ES.3. Rural Freeway Study Sections

Travel Time Data

State Route From To Length (mi) Data Technology Period

Texas I-45 Exit 213, Navarro 
County

Exit 267, Ellis County 54.1 GPS probe (Inrix) 2006–2007

South Carolina I-95 South Carolina–
Georgia border

SR 68, Hampton County 38.2 GPS probe (Inrix) 2006–2007

No.

Figure ES.3. A model of congestion and its sources.
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Findings

Data Set Compilation and Usage

The large and comprehensive data set included many levels of aggregation and summarization. 
Traffic data from urban freeways comprised the largest portion of the data set and included the 
original measurements from roadway detectors (5-minute intervals by lane), numbering in the 
hundreds of millions of records. The traffic data were also summarized at several spatial and 
temporal aggregation levels. The most-summarized portion of the data set was the one used for 
the cross-sectional statistical analysis: every record is an annual summary of traffic and reli-
ability characteristics, with annual event characteristics and roadway features merged into it. 
The data processing included new procedures specifically created by the research team for the 
project.

Exploratory Analyses

A large variety of exploratory analyses were undertaken before the main analyses to test assump-
tions, develop data processing methods, and more thoroughly understand the manifestation and 
ramifications of reliability.

Recommended Reliability Metrics

The Travel Time Index (TTI) is the ratio of the actual travel time to the ideal or free-flow travel 
time. Based on empirical tests, it was found that the performance metrics defined in the early 
stages of the research were sensitive to the effects of improvements. The 95th percentile TTI may 
be too extreme a value to be influenced significantly by operations strategies, but the 80th per-
centile was more sensitive to these improvements. As a result, the 80th percentile TTI was added 
to the list of reliability performance metrics for the remainder of the research. The final set of 
reliability metrics, which also are appropriate for general practice, appears in Table ES.4.

Travel Time Distributions

Developing travel time distributions is the starting point for defining reliability metrics. Travel 
time distributions also allow for visualization of general congestion and reliability patterns for a 

Table ES.4. Recommended Reliability Metrics

Reliability Performance Metric Definition Units

Buffer Index Difference between 95th percentile TTI and average 
travel time, normalized by average travel time.

Difference between 95th percentile TTI and median 
travel time (MTT), normalized by MTT.

%

Failure and on-time measures Percentage of trips with travel times <1.1 MTT and  
<1.25 MTT.

Percentage of trips with space mean speed less than 50, 
45, and 30 mph.

%

Planning Time Index 95th percentile TTI. None

80th Percentile TTI Self-explanatory. None

Skew statistic (90th percentile TTI - median)/(median -  
10th percentile TTI).

None

Misery Index (modified) Average of highest 5% of travel times divided by free-
flow travel time.

None
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highway section or trip. An examination of the distributions from the research study section 
reveals several characteristics:

•	 The shape of the travel time distribution for congested peak times (nonholiday weekdays) is 
much broader than the sharp spike evident in uncongested conditions. The breadth of this 
broad shoulder of travel times decreases as the congestion level decreases.

•	 Likewise, the tails of the distributions (to the right) appear more exaggerated for the uncon-
gested time slices. However, the highest travel times occur during the peaks.

•	 Despite the fact that peaks have been defined, a number of trips still occur at close to free flow; 
there are more of these trips in the peak period than in the peak hour (see discussion below 
of peak period and peak hour). This is probably because peak times actually shift slightly from 
day to day, as traffic demand can be shifted by events.

Data Requirements for Establishing Reliability

Because reliability is defined by the variability of travel conditions (travel time), it must be mea-
sured over a substantial portion of time to allow all of the influences of random events to be 
exerted. Tests showed that an absolute minimum of 6 months of data is required to establish 
reliability within a small error rate in areas where winter weather is not a major factor. A full year 
of data is preferred.

Supplemental Reliability Metric

The Atlanta study (detailed in Chapter 5) raised doubts about the use of the Buffer Index as the 
primary metric for tracking trends in reliability. The problem comes from how the Buffer Index 
is calculated: it is the buffer time (difference between the 95th percentile and the mean) normal-
ized by the mean.

The Buffer Index is considered to be too erratic and unstable for use as the primary reliability 
metric for tracking performance trends or for studying the effects of improvements. However, as 
a secondary metric, it provides useful information; rather than being discarded, it should be 
included in a suite of reliability performance metrics.

Defining Peak Hour and Peak Period

Most studies of reliability and congestion have defined fixed time periods for the peak hour and 
peak period. However, the research team decided that the most appropriate method would be to 
define peak hour and peak period specifically for each study section. The team used a definition 
based on the most typical start and end times of continuous congestion. The resulting time slices 
were reviewed against local anecdotal knowledge and required very little adjustment.

Estimating Demand in Oversaturated Conditions on Freeways

Because the study took an empirical approach, the team had to deal with the thorny issue of how 
to measure demand given that measured volumes under congested flow are actually less than 
capacity on freeways. A method for assigning the demand stored in queues during periods of 
flow breakdown was developed and used, particularly in defining the demand-to-capacity ratio 
for the statistical modeling.

Reliability Breakpoints on Freeways

It was shown that travel time reliability on a freeway is not a function of counted traffic volumes 
until a breakpoint volume is reached. Once the breakpoint volume is exceeded, the decrease in 
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travel time reliability (increase in the variance) is extreme and abrupt enough to suggest it is a 
vertical function, with a nonsingular relationship to further volume increases. The breakpoint 
volume varies significantly between facilities and even within the same freeway facility (by loca-
tion and direction of travel on the same facility). The breakpoint in reliability generally occurs 
at a counted volume significantly lower than the theoretical capacity of the facility computed 
according to the method in the Highway Capacity Manual (HCM).

But this peaking effect does not entirely explain the difference. The breakpoint volume is 
significantly lower than the theoretical capacity partly because most freeway sections are 
upstream of a bottleneck and, thus, are affected by downstream congestion backing up into 
the subject section long before the subject section’s HCM capacity is reached. Further, traffic-
influencing events (especially incidents) effectively lower capacity when they occur, and over 
time they cause reliability to degrade. This effect manifests itself in lower breakpoint volumes 
than capacity related strictly to physical features. Finally, even for bottlenecks, the data suggest 
that the reliability breakpoint occurs long before the theoretical HCM capacity of the bottle-
neck is reached.

Sustainable Service Rates on Freeways

Just as travel times vary over time, capacity is not a fixed value but also varies over time. The same 
factors that influence reliability affect capacity variability. The research did not specifically tease 
out all the factors, but they all are imbedded in the final capacity distributions. The team devel-
oped a large set of capacity distributions that look roughly like travel time distributions in 
reverse: the tail of the distribution is skewed to the left (lower capacity values) rather than to the 
right. Because these distributions were developed from year-long data measurements, they 
include the effect of the influencing factors, resulting in capacity values that could be used in a 
stochastic framework to model congestion and reliability.

Travel Time Distributions on Urban Freeways, Signalized Arterials,  
and Rural Freeways

An analysis of travel time distributions for different time slices and congested levels revealed the 
following characteristics:

•	 All distributions feature a tail that is skewed to the right (i.e., higher travel times). Most of 
these abnormally high travel times can be attributed to one or more of the sources of conges-
tion; that is, they occur in the presence of an event(s) and/or high demand;

•	 Uncongested periods are characterized by a sharp peak of travel time frequencies near the 
free-flow speed;

•	 When congestion dominates the time slice (e.g., peak hour, peak period), the travel time dis-
tribution becomes more broad and less peaked;

•	 Travel time distributions on signalized arterials are uniformly broad in shape, even for rela-
tively low levels of congestion; and

•	 As trips become longer, the travel time distributions assume the typical uncongested shape.

Vulnerability to Flow Breakdown

Examination of the 5-minute data at individual stations (groups of detectors in a direction on a 
highway segment) reveals that just 20 to 45 minutes before the start of what is considered the 
normal peak period, there is an upsurge in the 95th percentile TTIs. This upsurge begins before 
the uptick in average travel times and indicates that this window of time is vulnerable to flow 
breakdown. These windows are extremely important for operators to focus on, as breakdowns 
during this time will strongly influence the duration and severity of the peak.
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Reliability of Urban Trips Based on the Reliability of Links

For extended travel on urban freeways (trips of 10 to 12 miles in length), the reliability of the 
entire trip can be predicted as a function of the reliability of the links that comprise the trip. 
Although not specifically tested, it should be possible to construct trip reliability for trips that 
include other types of highways in addition to freeways, subject to the issue of time dependency 
for long trips.

Before-and-After Studies on Selected Study Sections

The primary goal of the research was to develop relationships for predicting the change in reliabil-
ity due to improvements. The best way to accomplish this goal was with controlled before-and-after 
studies. However, such analyses offer a substantial challenge because of their data requirements: to 
establish reliability empirically, at least 6 to 12 months of data are required. The preferred data col-
lection period is 12 months, including a long period of continuously collected data before and after 
the improvement. Instead of designing traditional before-and-after experiments, the team concen-
trated on collecting continuous traffic data from areas with quality data, interesting congestion, and 
good records of event data. The team identified 17 cases of improvements that coincided with the 
identified data, although the types of improvements were somewhat limited:

•	 Ramp meters—four;
•	 Freeway service patrol implementation—two;
•	 Bottleneck improvement—three;
•	 General capacity increases—five;
•	 Aggressive incident clearance program—two; and
•	 High-occupancy toll (HOT) lane conversion—one.

The analysis produced reliability adjustment factors that can be applied to the various improve-
ments (Table ES.5).

A global finding from the before-and-after analyses is that all forms of improvements, includ-
ing capacity expansion, affect both average congestion and reliability in a positive way (i.e., aver-
age congestion is reduced and reliability is improved). Conceptually, this makes sense: one of the 
seven sources of congestion and reliability identified earlier was the amount of base capacity. All 
things being equal, more capacity (in relation to demand) means that the roadway is able to 
absorb the effects of some events that would otherwise cause disruption. The size of this effect 
was greater than originally anticipated; that is, a large part of the benefits of capacity expansion 
projects greatly contributes to the value of reliability.

Cross-Sectional Statistical Modeling

Because only a limited number of before-and-after studies were possible, much of the effort for 
the study went into the creation of a cross-sectional data set from which statistical models could 
be developed. The final analysis data set for the statistical modeling is highly aggregated: each 
record represents reliability, traffic, and event data summarized for a section for a year, and reli-
ability is measured as the variability in travel times over the course of a year. As such, the cross-
sectional model is a macroscale model; it does not seek to predict the travel time for a particular 
set of circumstances, and it is not appropriate for real-time travel time prediction. For example, 
it does not suggest an expected travel time if incident and demand characteristics for a given day 
are known. Rather, it seeks to predict the overall travel time characteristics of a highway section 
in terms of both mean and reliability performance. It is appropriate for adaptation to many exist-
ing models and applications that seek similar predictions, and it can serve as the basis for con-
ducting a cost–benefit analysis.
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Table ES.5. Summary of Urban Freeway Before-and-After Studies

Case 
No. Urban Area Highway Covered Improvement Reliability Impacts (Peak Period)

1 Los Angeles I-210 Ramp metering: design, field implementation, 
and evaluation of new advanced on-ramp 
control algorithms on westbound I-210.

Slight increases in average travel time and 
Planning Time Index (PTI) were observed. 
However, subsequent to this evaluation, 
the algorithms have been adjusted.

2 San Francisco 
Bay Area

I-580 Ramp metering. 22% reduction in average travel time.
20% reduction in PTI.

3 Seattle SR 520 Ramp metering. 11% reduction in average travel time.
12% reduction in PTI.

4 Atlanta I-285, Northern Arc Ramp metering. 9% reduction in average travel time.
7% reduction in PTI.
3% increase in sustainable service rate.

5 Atlanta All freeways inside 
beltway perimeter

Incident management: incentive program for 
reducing large-truck crash incident duration 
(90 minutes).

13% reduction in large-truck crash incident 
duration.

9% reduction in lane hours lost per large-
truck crash.

6 Los Angeles I-710 Incident management: evaluation of pilot 
project to deploy towing service for  
big-rig tractor trailers.

10% reduction in average travel time.
20% reduction in PTI.

7 San Diego I-8 Incident management: expansion of the 
existing Freeway Service Patrol Beat-7  
on I-8.

3% reduction in average travel time.
4% reduction in PTI.

8 San Diego SR 52 Incident management: expansion of the 
existing Freeway Service Patrol.

20% reduction in average travel time.
10% reduction in PTI.

9 Minneapolis–
St. Paul

I-94 Capacity expansion: add third lane in each 
direction.

43% reduction in average travel time.
46% reduction in PTI.

10 Minneapolis–
St. Paul

I-494 Capacity expansion: add third lane in each 
direction.

31% reduction in average travel time.
16% reduction in PTI.

11 Minneapolis–
St. Paul

I-394 Capacity expansion: add auxiliary lanes 
westbound.

35% reduction in average travel time.
38% reduction in PTI.

12 Minneapolis–
St. Paul

Highway 169 Capacity expansion: convert signalized inter-
sections to diamond interchanges.

16% increase in average travel time.
11% reduction in PTI.

13 Minneapolis–
St. Paul

Highway 100 Capacity expansion: add third lane north-
bound; add auxiliary lane southbound; 
convert Highway 7 interchange from a  
clover leaf to a folded diamond.

20% reduction in average travel time.
30% increase in PTI.

14 Seattle I-405 southbound Capacity expansion: addition of one general-
purpose lane.

11% reduction in average travel time.
11% reduction in PTI.

15 Seattle I-405 northbound Capacity expansion: addition of one general-
purpose lane.

42% reduction in average travel time.
35% reduction in PTI.

16 Seattle I-405/SR 167 
interchange

Capacity expansion: grade separation ramp 
connecting southbound I-405 off-ramp 
with southbound SR 167 on-ramp.

20% reduction in average travel time.
23% reduction in PTI.

17 Minneapolis–
St. Paul

I-394 HOT lane conversion. 8% reduction in average travel time.
30% reduction in PTI.

Note: Long study segment = 16 miles; study section influenced by downstream bottleneck.
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Two model forms were developed: simple and complex. The simple model form relates all the 
reliability metrics to the mean TTI for the three highway types studied (urban freeways, rural 
freeways, and signalized arterials). These relationships are convenient for many applications that 
produce mean travel time–based measures as output. Because the mean TTI developed from the 
research data included the effects of all the possible influences of congestion, which produced a 
mean value greater than model results that usually are for typical (nonextreme) conditions, an 
adjustment factor was developed to convert model output to the overall mean TTI so that the 
relationships could be applied. An example of the strong relationship between mean TTI and 
95th percentile TTI is shown in Figure ES.4.

A more detailed model form was developed that related reliability measures to the factors that 
influence reliability. A series of statistical predictive models was developed that related the reli-
ability metrics over highway sections (multiple links, usually 4 to 5 miles long) to

•	 The critical demand-to-capacity ratio (maximum from the individual links);
•	 Lane hours lost due to incidents and work zones combined (annual); and
•	 Number of hours during which rainfall was ≥0.05 inch (annual).

Models were developed for the peak hour, peak period, midday, and weekday time periods. Guid-
ance was developed from readily available data on how to estimate demand, capacity, and lane 
hours lost. Guidance was also provided on how improvements affect changes in the models’ 
independent variables. The model structure is flexible and can easily incorporate new research 
on the effects of transportation improvements on reliability.

Congestion by Source

An assignment of congestion causality was made for the measured delay in the Seattle data 
(detailed in Chapter 5). Taken at face value, these data support the common thinking that inci-
dents and crashes cause between 40% and 60% of all delay. In reality, a considerable portion of 
the delay associated with incidents and crashes is caused by large traffic volumes. Therefore, the 
amount of delay caused by incidents is actually less than can be reasonably assigned by simply 
observing the occurrence of events. Numerous examples in the analysis data set of significant 
crashes and other incidents caused little or no congestion because of when they occurred. With-
out sufficient volume, an incident causes no measurable change in delay.

Figure ES.4. Section-level relationship for mean TTI and 95th percentile.
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In the Seattle area, many incidents take place during peak periods, causing already existing 
congestion to grow worse as a result of the interwoven effects of incidents, bad weather, and traf-
fic volumes on travel times. In addition, all types of disruptions to normal roadway performance 
(rain, crashes, and noncrash incidents) cause congestion to start earlier and last longer during 
the peak period, while increasing travel times during the normally congested times. Incidents 
and other disruptions also can cause congestion to form during times that are normally free from 
congestion. However, congestion only forms when the disruption lowers functional capacity 
below traffic demand. Thus volume, relative to roadway capacity, is a key component of conges-
tion formation, and in urban areas it is likely to be the primary source of congestion. Disruptions 
significantly increase the delay that the basic volume condition creates.

The fact that traffic volume is the basis of congestion also affects how various traffic disrup-
tions affect travel patterns. Not only does traffic volume affect whether an incident causes con-
gestion, but it affects how long that congestion lasts once the primary incident has been removed. 
The Seattle data showed that in the morning peaks, disruptions have a more noticeable effect on 
the timing of the end of the peak period, while in the evening the opposite is true.

Analysis of 42 roadway segments in the Seattle area showed that a majority of travel delay in 
the region is the direct result of traffic volume demand exceeding available roadway capacity. 
Whenever they occur, incidents, crashes, and bad weather add significantly to the delays that can 
be otherwise expected. The largest of these disruptions plays a significant role in the worst travel 
times that travelers experience on these roadways. However, the relative importance of any one 
type of disruption varies considerably from corridor to corridor.

In peak periods, incidents add only a marginal percentage increase to total delay, but they shift 
when and where those delays occur, as well as who suffers from those delays. That is, many inci-
dents shift where a normally occurring bottleneck occurs, freeing up some roadway sections, 
while causing others to suffer major increases in congestion. But taken as a total, if a roadway 
section is normally congested, the added delay from incidents is modest (at least in Seattle) com-
pared with the daily delay from simply too many vehicles for the available physical capacity.

In congested urban areas, traffic incidents more often cause unreliable traffic patterns than 
increases in total delay. While the total delay value does goes up, the big change is often the shift 
in who gets delayed. For an individual severe incident, many travelers may value the extra 
(unplanned) delay highly, and are more likely to remember these extreme cases. However, some 
of that (total) delay is offset by other travelers who reach their destination early because their trip 
is downstream of the incident-caused bottleneck, and consequently volume on their down-
stream trip segment has probably been metered by the upstream bottleneck.

Significance of Demand for Reliability Estimation

A major finding was that demand (volume) is an extremely important determinant of reliabil-
ity, especially relative to capacity. Demand’s interaction with physical capacity is the starting 
point for determining congestion. The research team initially postulated that the effect of most 
events would be determined by the level of demand under which they occurred. For example, 
if an incident or work zone blocked a traffic lane, the impact would only be felt if volumes were 
high enough to be affected by the lost capacity. Although demand was not expected to have a 
strong effect, it emerged as a significant factor throughout the various analyses.

The influence of demand is probably related not only to the sheer volume of traffic but also 
the volume’s characteristics. As volumes approach theoretical capacity, traffic flow becomes 
unstable and increasingly susceptible to breakdown from even small changes. These small 
changes can occur at a point substantially less than theoretical capacity; when they occur near 
potential bottleneck areas such as on-ramps, weaving areas, and lane drops, the team postulates 
that their effect is enhanced.

In addition to variations in demand as a source of unreliable travel times, evidence exists that 
physical capacity also varies. The work of Brilon and preliminary research conducted by other 
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SHRP 2 contractors suggest that capacity varies even in the absence of disruptions (4). The team 
postulates that fluctuations in traffic conditions at a microscale are the most likely causal factors 
for variations in capacity.

There are several implications of the findings that demand and capacity strongly influence 
travel time reliability:

•	 Capacity additions and demand reductions will improve congestion on nearly all days. Strat-
egies geared to disruptions (e.g., incident management) will only affect congestion when those 
disruptions appear;

•	 Demand management strategies (e.g., pricing) also will lead to improvements in reliability; and
•	 Accounting for volumes in relation to available capacity can provide a tool for efficiently allo-

cating operations strategies, particularly incident management.

Reliability As a Feature of Congestion

The intertwined relationship between demand, capacity, and disruptions documented in the L03 
research led to another major conclusion: reliability is a feature or attribute of congestion, not a 
distinct phenomenon. Any influence on congestion that leads to unreliable travel reliability can-
not be considered in isolation. Reliability has generally been considered to be related primarily to 
disruptions and the operational treatments aimed at those disruptions. However, analysis showed 
that a substantial amount of variability in travel times exists for recurring (e.g., bottleneck-related) 
conditions. Therefore, the most inclusive view of travel time reliability sees it as part of overall 
congestion. Just as congestion can be defined by extent and severity, it can also be defined by how 
it varies over time. Operational treatments are effective in dealing with unreliable travel times, but 
so are other congestion-relief measures.
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C h a p t e r  1

The fundamental objective of this project was to develop 
predictive relationships between highway improvements 
and travel time reliability. In other words, how can the 
effect of an improvement on reliability be predicted? Alter-
natively, how can reliability be characterized as a func-
tion of highway, traffic, and operating conditions? A variety 
of challenging issues were confronted in addressing this 
objective.

Significance of travel  
time reliability on 
transportation System 
performance

Reliability is important to travelers and transportation prac-
titioners for a variety of reasons:

•	 From an economic perspective, reliability is highly impor-
tant because travelers must either build in extra time to 
their trips to avoid arriving late or suffer the consequences 
of being late. This extra time has value beyond the average 
travel time used in traditional economic analyses. Recent 
work has documented that reliability has value to travelers 
and influences their behavior (1, 2);

•	 Because of the extra time required in planning trips and 
the uncertainty about how much time will be required for 
a trip, reliability influences decisions about where, when, 
and how travel is made; and

•	 Transportation planners and operators need to include the 
extra economic cost of unreliable travel to users in project 
planning, programming, and selection processes. This is 
particularly true of strategies that deal directly with road-
way events (e.g., incidents). In the past, most assessments of 
these types of strategies have missed this important aspect 
of travel.

New Concept of travel  
time reliability

Although use of travel time–based performance measures in 
planning and operations applications has taken on greater 
significance in the past few years, travel time reliability—how 
consistent (or variable) travel conditions are from day to day—
is a relatively new concept to which much of the transporta-
tion profession has had only limited exposure. Congestion 
has been growing nationwide, and planners increasingly have 
become involved in short-term activities such as performance 
monitoring, as well as operations and management strategies. 
These activities have been elevated in importance by trans-
portation agencies in order to be responsive to the demands 
of the public and state legislatures. Anecdotal reports and 
technical studies indicate that average congestion levels have 
grown, and continue to grow, in our cities. In a 2005 report, 
Travel Time Index (TTI) researchers found that congestion 
levels in 85 of the largest metropolitan areas have grown  
in almost every year from 1982 to 2003 for all population 
groups (3).

Recently, anecdotal reports and empirical information have 
suggested that congestion levels have eased; TTI researchers 
noted in the 2007 Urban Mobility Report that

Congestion, by every measure, has increased substantially over 
the 25 years covered in this report. The most recent two years 
of the report, however, have seen slower growth or even a 
decline in congestion. Delay per traveler—the number of 
hours of extra travel time that commuters spend during rush 
hours—was 1.3 hours lower in 2007 than 2005. This change 
would be more hopeful if it was associated with something 
other than rising fuel prices (which occurred for a short time 
in 2005 and 2006 before the sustained increase in 2007 and 
2008) and a slowing economy. This same kind of slow growth/
decline over a few years occurred in the early 1990s when 
spending and growth in the high-tech and defense sectors of 
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the economy declined dramatically. The decline means con-
gestion is near the levels recorded in 2003, not exactly a year 
remembered for trouble-free commuting. (4)

However, talking about typical or average conditions in a 
transportation system that experiences wide fluctuations in 
performance tells only part of the story. Travel time reliability 
has taken on increasing importance. Variation in travel times 
now is understood as a separate component of the public’s 
and business sector’s frustration with congestion problems. 
Reliability is a major part of system performance and of trav-
elers’ perceptions of performance. Although reliability has 
not been widely used to describe performance, agencies are 
increasingly recognizing its value in assessing their own per-
formance and in communicating performance to the public.

Defining travel time reliability

In terms of highway travel, the Reliability Research Program 
of the Future Strategic Highway Research Program (F-SHRP) 
defined highway travel time variability as synonymous with 
reliability:

. . . from a practical standpoint, travel-time reliability can be 
defined in terms of how travel times vary over time (e.g., hour-
to-hour, day-to-day). This concept of variability can be extended 
to any other travel-time-based metrics such as average speeds 
and delay. For the purpose of this study, travel-time variability 
and reliability are used interchangeably. (5)

A slightly different view of reliability is based on the notion of a 
probability or the occurrence of failure often used to character-
ize industrial processes. With this view, it is necessary to define 
failure in terms of travel times; in other words, a threshold must 
be established, and the number of times the threshold is not 
achieved or exceeded can be counted. These types of measures 
are similar to on-time performance, since performance is mea-
sured relative to a preestablished threshold. The only differ-
ence is that failure is defined in terms of how many times the 
travel time threshold is exceeded, but on-time performance 
measures how many times the threshold is not exceeded.

The authors of NCHRP Project 3-68 note that the defini-
tions for variability and failure have an underlying theme: 
they both imply that a history or distribution of travel times 
exists (6). The history over which travel times are measured 
must be sufficiently long to capture the variations that result 
from the random and planned events on the roadway system. 
Once this distribution is established, any number of measures 
can be constructed to describe its size and shape. The pres-
ence of a distribution of travel times leads to a more general 
definition of travel time reliability as the level of consistency in 
travel conditions over time. Travel time reliability is measured 

by describing the distribution of travel times that occur over 
a substantial period of time.

In recent years, some non-U.S. reliability research has focused 
on another aspect of reliability—the probability of failure, in 
which failure is defined in terms of traffic flow breakdown. A 
corollary concept, vulnerability, is a measure of how vulnerable 
a network is to breakdown conditions. This measure can be 
applied at the link or network level (7).

Understanding travel  
time reliability

To understand travel time reliability, it is essential to under-
stand the factors that cause travel times to be unreliable. Pre-
vious work indicates that reliability is determined by the 
variability in conditions that travelers encounter from day to 
day. Reliability metrics show that variability exists in the sys-
tem, but they do not tell what causes it. The original F-SHRP 
Reliability Research Plan identified seven sources of conges-
tion as the factors that cause travel times to be unreliable and 
contribute to total congestion: incidents, inclement weather, 
work zones, special events, traffic control device timing, demand 
fluctuations, and inadequate base capacity. These categories 
were developed to avoid the recurring–nonrecurring nomen-
clature that has been in wide use but is not detailed enough for 
the purpose of SHRP 2 research.

Operational Strategies  
and Capacity expansion

Both operational strategies and capacity expansion projects 
were postulated to affect reliability, and both were studied in 
the research. Many operational strategies are aimed specifi-
cally at the factors that cause unreliable travel (e.g., incident 
management, work zone management). Note, however, that 
one of the seven sources of congestion affecting reliability is 
inadequate base capacity. The effect of physical capacity on 
congestion is well established and has been the focus of ana-
lytic procedures for the past several decades (e.g., the Highway 
Capacity Manual). Physical capacity also affects reliability 
because it interacts with all the other sources of congestion. 
For example, consider an incident that blocks one lane of traf-
fic. Its effect is much greater if there are only two lanes avail-
able than if three or more were available. So, adding physical 
capacity definitely will have an effect on reliability.

travel time Measurements

Travel time measurements are critical to any definition of reli-
ability and reliability metrics. Travel time is the starting point 
for sound congestion measurement because it reflects the 
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actual experience of system users. When measured directly, it 
also is independent of theoretical capacity concerns, such as 
what happens in oversaturated conditions. Once travel time is 
obtained, a whole family of additional measures can be created 
using other basic information about the system (e.g., volume, 
free-flow speed). Delay is one example of a metric that natu-
rally derives from travel time measurements.
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C h a p t e r  2

Introduction

The project was organized in three phases: foundational 
research, data collection and preliminary analyses, and reli-
ability prediction models.

Phase 1: Foundational Research

The foundational research effort included

•	 Conducing a literature review;
•	 Identifying the reliability metrics to be used in the 

research;
•	 Defining the improvement strategies that affect travel time 

reliability;
•	 Specifying an experimental design for the research;
•	 Identifying the types of data that were needed to conduct 

the research; and
•	 Defining an analysis plan for conducting the research, 

including the model forms to be investigated.

Phase 2: Data Collection  
and Preliminary Analyses

The data collection effort and preliminary analyses were doc-
umented and included

•	 A description of the data sets that were assembled; and
•	 Exploratory analyses of the data to establish fundamental 

concepts for the detailed analyses.

Phase 3: Reliability Prediction Models

The Phase 3 effort is documented for the first time here in the 
final report.

Literature review

Reliability Performance Metrics

The recognition that travel time reliability is a problem is 
reflected in changes to traditional monitoring programs that 
examine average or typical congestion. Increasingly, traffic 
monitoring agencies understand that those traditional studies 
must be supplemented with tracking efforts that include day-
to-day measures, as well (1). The National Transportation 
Operations Coalition Performance Measurement Initiative, 
for example, identified travel time reliability (buffer time) as 
one of the 14 key measures for operations programs (2). Data 
and analysis procedures, however, are not being developed as 
fast as the recognition of the problem.

Table 2.1 displays several transportation agencies that have 
included travel time reliability as a portion of mobility mea-
surement in their performance evaluations. Some of the eval-
uations are performed on a corridor basis, and others are 
done on a systemwide or statewide basis. Table 2.1 includes 
only those cases in which reliability measures have been 
endorsed or adopted by a public entity responsible for oper-
ating and/or maintaining transportation systems, such as a 
state department of transportation (DOT). The table does 
not include recommendation or use of performance mea-
sures by academic or research groups.

NCHRP Project 3-68 identified several measures of travel 
time reliability that provide a basis for selecting measures for 
the research:

•	 Buffer Index—Difference between the 95th percentile 
travel time and the average travel time, divided by the aver-
age travel time;

•	 Planning Time Index—95th percentile Travel Time Index 
(TTI). A TTI of 1.2 indicates that a trip takes 20% longer 
than it would under ideal conditions;

Preparatory Analyses



18

•	 Percentage of trips with space mean speeds ≤50 mph; and
•	 Percentage of trips (section or origin–destination) with 

space mean speeds ≤30 mph (4).

Tu et al. classified travel time reliability measures into five 
types: (a) statistical range methods, (b) buffer time methods, 
(c) tardy-trip measures, (d) probabilistic measures, and (e) skew- 
width methods (10). The first three measures were first defined 
by Lomax et al. (11). Probabilistic measures, which are in the 
same category as failure-based or on-time measures, have 
been proposed for use in Florida, in combination with a buf-
fer time measure (12). Skew-width methods are based on the 
observation that most travel time distributions are skewed to 
the right, as shown with example measures in Figure 2.1. It 
has been suggested that travel times follow either a lognormal 
distribution or gamma distribution with an adequately scaled 
shape parameter (13).

In traditional statistics, two standard measures are used to 
express the unevenness of distributions:

•	 Skewness is a measure of symmetry, or more precisely, the 
lack of symmetry. A distribution, or data set, is symmetric if 
it looks the same to the left and right of the center point; and

•	 Kurtosis is a measure of whether the data are peaked or flat 
relative to a normal distribution. That is, data sets with high 
kurtosis tend to have a distinct peak near the mean, decline 
rather rapidly, and have heavy tails. Data sets with low kurto-
sis tend to have a flat top near the mean rather than a sharp 
peak. A uniform distribution would be the extreme case (14).

Van Lint and van Zuylen noted that buffer time and Misery 
Index measures based on the mean may not be appropriate 
because of the underlying skewed distribution (15). They also 
defined two measures that describe the size and shape of the 
travel time distribution:

1. A skewness statistic, defined as (90th percentile - median)/
(median - 10th percentile); and

2. A width statistic, defined as (90th percentile - 10th  
percentile)/median.

Total number of trips, shown in Figure 2.1, for the time 
period = 3,485 million (each point on the line represents the 
number of trips grouped by 30-second travel time intervals). 
Note that about 8% of trips (275,000 out of 3.485 million) 
occurred at free flow during this period.

Table 2.1. Reliability Measures in Selected Transportation Agencies

Agency Reliability Metrics Used Data Source Coverage

Freeway

Georgia Regional Transportation Authority (for annual 
mobility performance in Atlanta) and Georgia DOT (3, 4)

Buffer Index, Planning Time 
Index

Georgia DOT and 
local agencies

Facilities

Florida DOT (5) Buffer Index, on-time arrival Florida DOT and 
local agencies

Facility Statewide

Southern California Association of Governments (for 
goods movement study) (6)

Buffer Index Caltrans and local 
agencies

Facility

Washington State DOT (WSDOT; for performance  
monitoring and traveler information) (7)

95th percentile travel time WSDOT and local 
agencies

Facility (time is the sum 
of link times)

National Transportation Operations Coalition (for  
performance measure initiative); potential case  
study with I-95 Corridor Coalition (2)

Buffer Index Various agencies To be determined

Arterials

NCHRP 3-68 Buffer Index Various agencies Facilities

PRUEVIIN (process for regional understanding and  
evaluation of integrated ITS networks)

Coefficient of trip time variation WSDOT Facilities

Private companies—Inrix and Traffic.com Private Facilities

Maryland State Highway Administration and Delcan-NET Private Facilities

Freight

American Transportation Research Institute (ATRI) (FHWA 
freight performance measurement) (8)

Buffer Index Private State- and national-level 
Interstates

Missouri DOT ATRI I-70 across state

Note: ITS = intelligent transportation system.

http://www.Traffic.com
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Freight Efforts

In terms of economic value, reliability is probably more 
important to freight carriers and shippers than to personal 
travelers. With the rise in just-in-time deliveries (largely as a 
replacement to extensive warehousing), providing depend-
able (reliable) service has become extremely valuable. Con-
versely, failure to provide dependable service can increase 
costs significantly.

The chemicals supply chain provides an example of how 
reliability affects truck freight operations. Increases in trans-
portation reliability play an important role in reducing inven-
tory in the chemicals supply chain. Because of the many nodes, 
up to one-third of chemical inventory is in transit at any point. 
Inventory managers keep safety or buffer stock to cushion 
against the variability of inbound arrivals, and the amount of 
safety stock increases with the degree of unreliability and the 
number of stocking locations. However, capacity to receive 
chemical stocks is limited by the size of the liquid storage silos. 
Balancing capacity with demand is a challenge. As one indus-
try consultant explains: “If the tank is full, there’s no place to 
put it [incoming chemicals] and you pay demurrage [storage 
charges] on the railcar. But if the vessel is early, you have wait 
time or dead freight.” As transportation reliability decreases, 
wait time, dead freight, and cost increase (16).

Conceptually, reliability for trucks is no different than for 
personal travel; that is, it is measured the same way (the travel 
time distribution) with the same metrics (e.g., Buffer Index). 
Also, all roadway, demand management, and operations 
improvement types (except for those that specifically target 
trucks, such as lane and service restrictions) affect both truck 

and personal travel. A practical difference is the length of the 
trip. Much truck travel is intercity, and therefore occurs on 
long sections of rural highways that are not routinely con-
gested. This means that only a small portion of the entire trip 
is within urban areas, where most of the delay and associated 
unreliability occur.

In 2002, the American Transportation Research Institute 
(ATRI) partnered with the Federal Highway Administration 
(FHWA) to develop methods for measuring freight perfor-
mance on U.S. highways (8). With the freight performance 
measurement project, ATRI demonstrated that it is possible 
to collect roadway operational data for trucks using satellite 
technology and that individual truck data could be rendered 
unidentifiable through a cleansing process. The trucking 
companies wanted some assurance (primarily caused by 
safety and security concerns) that their trucks could not be 
tracked once the identity cleansing process had been per-
formed. The freight performance measurement results were 
deemed successful in identifying freight-significant corridors 
and developing measures for evaluating the performance of 
full highway corridors, as well as providing information on 
individual segments within these corridors.

Missouri Department of Transportation

The Missouri Department of Transportation (Missouri 
DOT) has developed a set of performance measures to grade 
its activities and system performance. The measures are 
housed in Tracker, a report that includes average truck speed 
as one of its freight performance measures (17). The average 

Note: Analysis of NavGAtor data from I-75 northbound from I-285 to Wade Green Road (13.33 miles), 
Atlanta, Georgia, from 5:00 to 7:00 p.m. on weekdays, 2004. 

Figure 2.1. Travel time reliability is determined by the distribution.
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truck speed is updated monthly for the entire length of I-70 
across Missouri as well as I-70 nationwide. This speed esti-
mate is supplied as a monthly average to the Missouri DOT 
by ATRI and the freight performance measurement database 
described above.

Washington State Department  
of Transportation

A research project by the Washington State Transportation 
Center analyzed options for collecting travel time data for 
trucks to determine the benefits provided by freight mobility 
projects in Washington State (18). The report identifies two 
types of travel time data that need to be collected for trucks: 
first, the average travel time experienced while making rou-
tine trips; and second, travel time data that demonstrate what 
happens when trucks experience severe, unexpected delay. 
The report states that collecting truck travel times using float-
ing car techniques is not practical to gather enough data to 
show truck trip reliability. In addition, travel times must be 
collected for trip lengths longer than just the affected portion 
of a corridor where improvements have been made. Since 
some trucks would change their travel patterns to make use of 
the improved roadway, the travel time between truck origin– 
destination pairs should be used to determine the effect of the 
improvement on delay reduction for the area.

Texas Department of Transportation  
Work Zone Studies

The Texas Transportation Institute developed two case studies 
using archived speed data and more detailed work zone data 
from Houston and San Antonio in an ongoing TxDOT 
research project (19). This study related detailed information 
on work zone start–stop times, weather information, and 
crash information to determine the delay that is caused by the 
work zone.

PRUEVIIN

A research effort in the Seattle, Washington, area developed a 
technique to combine regional travel demand models and 
commercially available traffic simulation software into a 
scenario-based framework (20). The process for regional 
understanding and evaluation of integrated intelligent trans-
portation systems (ITS) networks (PRUEVIIN) has two main 
features. First, it uses state-of-the-art traffic simulation mod-
els to identify the impacts of ITS on a transportation system 
under average conditions. Second, it provides a method to 
incorporate system variability, which links the simulation 
analysis to the travel demand modeling framework. This 
second feature allows the evaluations to include realistic 

conditions (e.g., inclement weather, collisions, vehicle break-
downs, work zones) rather than to model the expected or 
best-day conditions. In one analysis, the coefficient of trip 
time variation was calculated by examining the variation in 
travel times across each of the different modeled scenarios for 
a specific trip. Results showed that as the coefficient gets 
larger, the variability of trip times increases, and reliability for 
the trip decreases. PRUEVIIN demonstrates that reliability 
measures can be generated without enormous amounts of 
travel time data collection and may provide a means of 
obtaining travel time reliability measures on arterial streets, 
where data can be scarce.

Inrix and Traffic.com

Several private companies have been collecting travel time 
data on freeways and arterial streets in many U.S. cities for 
several years. Inrix (21) and Traffic.com (22) collect travel 
time data by tracking fleets of probe vehicles in each area 
using global positioning system (GPS) tracking. They also 
obtain data from state DOT web sites and other sources of 
speed data to supplement the probe vehicle data. They pro-
duce real-time travel speed estimates that are posted to web 
sites and provided to the media in the majority of these 
areas. These real-time data are generally archived and could 
be used to calculate travel time reliability on arterial streets. 
Few independent analyses have been performed on the GPS-
tracked travel time data from these two sources, so there is a 
great deal of uncertainty as to the composition of the data. 
The Maricopa Association of Governments (the metropoli-
tan planning organization for the Phoenix, Arizona, urban 
area) compared private vendor travel time data from two 
firms with their own sources (freeway detectors and floating 
car runs). The evaluation indicated that on freeways, both 
companies’ historic average speeds compared favorably with 
data from eight accurate loop detector freeway locations 
maintained by Arizona. The evaluation also found that on 
arterial streets, both companies’ historic average speeds 
compared favorably with the Maricopa Association’s traffic 
speed data.

Beyond Reliability: The Seven Sources

Reliability metrics provide an understanding of how depend-
able or variable travel conditions are, but they do not iden-
tify the cause of the variability. In this sense, reliability 
measures are top-level outcome measures. A deeper under-
standing of what causes unreliable travel (and congestion, in 
general) is useful because it indicates which general areas 
or specific strategies should be emphasized. The original 
research plan for the SHRP 2 Reliability areas recognized the 
need for this deeper understanding and identified seven 

http://www.Traffic.com
http://www.Traffic.com


21

sources of congestion. Figure 2.2 shows how these seven 
sources interact to produce total congestion. Reliability is an 
aspect of total congestion that is greatly influenced by the 
complex interactions of traffic demand, physical capacity, 
and roadway events.

An understanding of how each source contributes to total 
congestion (as well as reliability) is limited, although the 
current research attempted to determine these contribu-
tions analytically. National estimates have been produced by 
FHWA (Figure 2.3), but these were determined by consensus 

rather than analysis. FHWA estimates also are meant to be a 
national snapshot, not indicative of individual corridors or 
highways. For example, in rural conditions, delays are nearly 
always a function of events rather than a bottleneck. In 
urban conditions, especially on a facility with a dominant 
bottleneck, most of the delay will be determined by the 
bottleneck.

Improvements that  
affect reliability

Tables 2.2, 2.3, and 2.4 show an effects matrix for the three 
major categories of improvement: capacity additions, opera-
tional improvements, and demand management, respectively. 
The list is illustrative rather than exhaustive. The assessment 
listed in the far-right column (Significance of Expected Effect 
on Reliability) of each of the three tables is based on the 
team’s initial subjective judgment about the magnitude of the 
strategy’s effect on reliability; it does not reflect the results of 
any of the research conducted for the project.

experimental Design

Types of Analyses Conducted

Three main forms of analysis were undertaken, as described 
below. In addition, a large set of exploratory analyses were 
conducted before the primary analyses as part of Phase 2 (see 

No.

Figure 2.2. A model of congestion and its seven sources.

Figure 2.3. FHWA national estimates of delay by 
source (23).
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Chapter 4) to identify the parameters necessary to conduct 
the primary analyses.

1. Before-and-after analysis—Since the major objective of 
the research was the development of models that could 
predict the change in reliability due to improvements, 
before-and-after analysis was the most appropriate experi-
mental design. Here, before is a period of time prior to 
implementing the improvement, and after is a period of 

time after the improvement has been implemented. Ideally, 
before-and-after analysis is applied with a control group to 
help account for the influence of background factors. In 
this approach, the same highway section or network is 
studied with and without the improvement. However, it 
was recognized early in the research that it would be impos-
sible to study all the possible improvement types in the 
field due to data limitations. Therefore, a second approach 
was developed that could handle reliability prediction.

Table 2.2. Congestion Strategy Effects Matrix: Add Capacity

Strategy Expected Effect on Reliability
Existing Methodology  
to Calculate Effects

Significance of Expected 
Effect on Reliability

Add Capacity—Freeways

New freeways Add new system capacity, reduce demand on 
adjacent freeways and arterials, and reduce 
level of incident impacts

HCM, planning model Medium

Widen freeways Add new system capacity, reduce demand on 
adjacent freeways and arterials, and reduce 
level of incident impacts

HCM, planning model Medium

New toll roads Add new system capacity, reduce demand on 
adjacent freeways and arterials, and reduce 
level of incident impacts

HCM, planning model Medium

New toll lanes on existing roads Add new system capacity, reduce demand on 
adjacent freeways and arterials, and reduce 
level of incident impacts

HCM, simulation Medium

Interchange improvements Add capacity at bottleneck, reduce potential for 
secondary incidents

HCM, simulation Medium

New HOV–managed lanes Add new system capacity, reduce demand on 
adjacent freeways and arterials, and reduce 
level of incident impacts

HCM, simulation Medium

Truck-only lanes Add new system capacity, reduce demand on 
adjacent freeways and arterials, reduce level of 
incident impacts, and reduce crash potential 
by eliminating auto–truck speed and braking 
differential

HCM, simulation Medium

Add Capacity—Arterials

New arterials Add new system capacity, reduce demand on 
adjacent freeways and arterials, and reduce 
level of incident impacts

HCM, planning model Medium

Widen arterials Add new system capacity, reduce demand on 
adjacent freeways and arterials, and reduce 
level of incident impacts

HCM, planning model Medium

Street connectivity Add new system capacity, reduce demand on 
adjacent freeways and arterials, and reduce 
level of incident impacts

Simulation Medium

Grade separations Reduce delay at intersections and reduce crash 
potential

HCM, simulation Medium

HOV–managed lanes Add new system capacity, reduce demand on 
adjacent freeways and arterials, and reduce 
level of incident impacts

HCM, simulation Medium

Note: HCM = Highway Capacity Manual; HOV = high-occupancy vehicle.
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Table 2.3. Congestion Strategy Effects Matrix: Operational Improvements

Strategy Substrategies Included
Effect on Congestion 

Sources
Factors Affecting Reliability  

Strategy Implementation

Existing 
Methodology  
to Calculate 

Effects

Significance  
of Expected 

Effect on 
Reliability

Operational Improvements—Freeways

TMC Operations Integrated real-time incident manage-
ment, verification, detection, and 
traveler information

Reduces delay due to incidents, 
weather, special events, work 
zones, and bottlenecks

Geographic coverage, equipment density, con-
gestion level, and program aggressiveness

IDAS High

Service patrols Must include incident scene manage-
ment methods

Reduces delay due to 
incidents

Geographic coverage, vehicle route density, 
congestion level, and program 
aggressiveness

IDAS High

On-scene incident 
management 
improvements

Response agency coordination and 
training

Reduces delay due to 
incidents

Program aggressiveness IDAS Medium

Remote verifica-
tion (CCTV)

Camera views available to multiple 
agencies and in TMC

Reduces delay due to 
incidents

Geographic coverage, equipment density, and 
program aggressiveness

IDAS High

Event 
management

Incident management coordination 
among agencies and event ingress–
egress planning and coordination

Reduces delay due to special 
events

Geographic coverage, equipment density, con-
gestion level, and program aggressiveness

IDAS Medium

Ramp metering Ramp meter algorithms based on 
real-time traffic information

Reduces delay due to incidents, 
weather, special events, 
work zones, and bottlenecks

Geographic coverage, equipment density, con-
gestion level, and program aggressiveness

IDAS, simulation High

Lane controls DMS over lanes to close lanes in 
advance of incidents

Reduces delay to incidents, 
special events, and work 
zones

Geographic coverage, equipment density, con-
gestion level, and program aggressiveness

IDAS, simulation High

Managed lanes HOV lanes, HOT lanes, truck-only 
lanes, and TOT lanes

Reduces delay due to incidents 
and bottlenecks

Geographic coverage, equipment density, con-
gestion level, and program aggressiveness

Simulation High

Electronic toll 
collection

Toll payment by electronic toll tags Reduces or eliminates delay at 
toll booths

Geographic coverage, equipment density, con-
gestion level, and program aggressiveness

Simulation High

Real-time traveler 
information

Pretrip information by 511, web sites, 
subscription alerts; en route infor-
mation on DMS, 511, and real-time 
navigation systems

Reduces delay due to inci-
dents, weather, special 
events, work zones, and 
bottlenecks

Geographic coverage, equipment density, con-
gestion level, and program aggressiveness

IDAS High

Work zone 
management

Active management in TMC coverage 
areas, real-time information from 
portable equipment in non-ITS 
areas

Reduces delay in work zones Geographic coverage, equipment density, con-
gestion level, and program aggressiveness

IDAS, simulation, 
QuickZone

High

Road weather 
information 
systems

Weather information supplied to 
TMCs from roadside weather 
stations

Reduces delay due to inci-
dents and weather

Geographic coverage, equipment density, con-
gestion level, and program aggressiveness

IDAS High

Road weather 
pretreatment

Application of anti-icing chemicals 
on defined road segments to pre-
vent or retard icing

Reduces delay to incidents 
and weather

Geographic coverage, equipment density, and 
program aggressiveness

IDAS Medium

(continued on next page)
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Table 2.3. Congestion Strategy Effects Matrix: Operational Improvements (continued)

Strategy Substrategies Included
Effect on Congestion 

Sources
Factors Affecting Reliability  

Strategy Implementation

Existing 
Methodology  
to Calculate 

Effects

Significance  
of Expected 

Effect on 
Reliability

Variable speed 
limits

DMS to change speed limits based on 
current conditions

Reduces delay due to incidents, 
weather, special events, and 
work zones

Geographic coverage, equipment density, and 
program aggressiveness

Simulation High

Ramp 
improvements

Construct additional ramp lanes and 
lengthen ramps to provide longer 
acceleration space

Reduces delay due to 
bottlenecks

Extent of improvement Simulation Medium

Ramp closures Close entrance ramps in areas with 
closely spaced ramps

Reduces delay due to 
bottlenecks

Extent of closures and ramp spacing Simulation Medium

Bottleneck removal Add auxiliary lanes and improve road 
geometrics

Reduces delay due to 
bottlenecks

Geographic coverage and congestion level Travel demand 
models, 
simulation

High

Integrated multi-
modal corridors

Integrated control of freeways and 
arterials within a corridor

Reduces delay due to incidents, 
weather, special events, work 
zones, and bottlenecks

Geographic coverage, equipment density, and 
program aggressiveness

Travel demand 
models, 
simulation

High

Advanced technol-
ogy for freight 
management

Fleet management, advanced vehicle 
location, real-time truck traveler 
information, roadside permitting–
inspection, and weigh-in-motion

Reduces truck delay Geographic coverage, equipment density, and 
program aggressiveness

IDAS Medium

Operational Improvements—Arterials

Geometric 
improvements

Reduce grade and curvature Reduces delay due to incidents 
and bottlenecks

Geographic coverage and congestion level HCM, HERS Low

Intersection 
improvements

Add turn lanes, improve intersection 
geometrics

Reduces delay due to 
bottlenecks

Geographic coverage and congestion level Simulation, HCM Low

One-way streets Convert two-way streets to one-way Reduces delay due to 
bottlenecks

Geographic coverage and congestion level Travel demand 
models, 
simulation

Medium

(continued on next page)
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Access 
management

Reduce driveways on arterials, provide 
interparcel access

Reduces delay due to 
bottlenecks

Geographic coverage and congestion level Travel demand 
models

Medium

Advanced signal 
systems

Centrally controlled signals, advanced 
detection, and advanced signal con-
trol strategies

Reduces delay due to poor sig-
nal timing

Geographic coverage, equipment specifications, 
and program aggressiveness

Simulation High

Signal retiming and 
optimization

Regularly scheduled signal optimiza-
tion programs

Reduces delay due to poor sig-
nal timing

Geographic coverage, equipment specifications, 
and program aggressiveness

Simulation High

Changeable lane 
assignments

Reversible lanes Reduces delay due to 
bottlenecks

Geographic coverage and congestion level Simulation Medium

HOV by-pass ramp Provide by-pass lanes for HOVs and 
buses at entrance ramps

Reduces delay due to ramp 
bottlenecks

Congestion level Simulation Medium

Parking restrictions Restrict parking on arterial streets dur-
ing peak hours

Reduces delay due to 
bottlenecks

Geographic coverage and congestion level Simulation Medium

Incident 
management

Incident management coordination 
among agencies focused on arterials

Reduces delay due to incidents Geographic coverage, vehicle route density, 
congestion level, and program aggressiveness

IDAS Medium

Event management Incident management coordination 
among agencies and event ingress–
egress planning and coordination

Reduces delay due to special 
events

Geographic coverage, equipment density, con-
gestion level, and program aggressiveness

IDAS Medium

Road weather 
information 
systems

Weather information supplied to TMCs 
from roadside weather stations

Reduces delay due to incidents 
and weather

Geographic coverage, equipment density, con-
gestion level, and program aggressiveness

IDAS High

Remote verification 
(CCTV)

Camera views available to multiple 
agencies and in TMC

Reduces delay due to incidents Geographic coverage, equipment density, and 
program aggressiveness

IDAS High

Real-time traveler 
information

Pretrip information by 511, web sites, 
subscription alerts; en route informa-
tion on DMS, 511, and real-time  
navigation systems

Reduces delay due to incidents, 
weather, special events, work 
zones, and bottlenecks

Geographic coverage, equipment density, con-
gestion level, and program aggressiveness

IDAS High

Note: TMC = traffic management center; IDAS = ITS deployment analysis system; HOT = high-occupancy toll; TOT = truck-only toll; DMS = dynamic message sign; HERS = Highway Economic Requirements System.

Table 2.3. Congestion Strategy Effects Matrix: Operational Improvements (continued)

Strategy Substrategies Included
Effect on Congestion 

Sources
Factors Affecting Reliability  

Strategy Implementation

Existing 
Methodology  
to Calculate 

Effects

Significance  
of Expected 

Effect on 
Reliability
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2. Cross-sectional analysis—Patterned after classical exper-
imental design, this approach establishes a matrix of fac-
tors and their levels. Ideally, observations are taken for 
each combination of factors. But as noted, strict control of 
all factors was not achievable; consequently, there were 
missing combinations, which precluded studying interac-
tions directly from the field data. Statisticians refer to this 
situation as a quasi-experimental design. In this approach, 
experimental design is used to ensure that a range of con-
ditions is represented in the data.

3. Congestion by source analysis—Identifying the contribut-
ing factors (the seven sources) to congestion and reliability 

is a major concern for the transportation profession. 
Table 2.5 shows how several previous studies identified 
congestion by source. The primary issue is how to split up 
delay so that each contributing source gets a share. The 
analyst must decide how much delay would have occurred 
in the absence of the event and how to reasonably split the 
delay when multiple sources are at work. These decisions 
are further complicated if a crash occurs when congestion 
sources such as inclement weather and work zones, which 
can increase the likelihood of a crash, are present. Should 
the resulting delay be charged completely to the weather or 
work zone category, or shared with the incident category?

Table 2.4. Congestion Strategy Effects Matrix: Demand Management

Category Strategy Substrategies Included
Expected Effect on 

Reliability

Existing 
Methodology to 

Calculate Effects

Significance of 
Expected Effect 

on Reliability

Travel alternatives Public education on 
aggressive driving

Public service announce-
ments, driver training, 
and brochures

Reduce crashes due to 
aggressive driving, 
fewer incidents

None Low

Travel alternatives Reduction in trips, 
diversion to other 
modes and/or 
times

Transit trip itinerary plan-
ning, real-time transit 
information, and com-
mercial vehicle fleet 
scheduling

Reduce trips and reduced 
congestion

Travel demand 
modeling

Medium

Land use Smart growth 
policies

Transit-oriented design, 
access management, 
street connectivity,  
bike–pedestrian facilities, 
and mixed use 
development

Reduce trips and reduced 
congestion

Travel demand 
modeling

Medium

Pricing Reduction in trips 
or time shift due 
to pricing

Toll roads, HOT lanes, 
time-of-day pricing, cor-
don pricing, parking pric-
ing, and HOV parking

Reduce trips and reduced 
congestion

Travel demand 
modeling

Medium

HOV Rideshare 
programs

Vanpool and carpool pro-
grams, transportation 
management 
associations

Reduce trips and reduced 
congestion

Travel demand 
modeling

Medium

Freight Truck-only toll lanes Toll lanes exclusively for 
trucks and time-of-day 
pricing

Removes trucks from gen-
eral purpose lanes, 
reduces truck–auto 
conflicts, reduces 
crashes, and reduces 
congestion in general-
purpose lanes by 
removing slower trucks

Simulation Low

Freight Lane restrictions Restrict left lanes from use 
by trucks

Reduces truck conflicts  
in restricted lanes, 
reduces crashes, 
reduces congestion  
in restricted lanes

Simulation Low

Freight Delivery restrictions Restrictions on deliveries in 
peak hours

Reduces congestion in 
restricted areas during 
peak hours

Travel demand 
modeling

Low
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Factors Considered

The experimental design is detailed in Table 2.6. The top-level 
design in Table 2.6 shows the overarching factors that were 
studied. The experimental design does not specify a classic 
factorial experiment because the number of locations needed 
to cover all possible factorial combinations was prohibitive. 
Rather, the experimental design was used to ensure that a 
range of conditions was covered by the data and to identify 
the important factors and levels of those factors that were 
desirable, but not necessarily achievable. The combinations 
of factors that resulted, therefore, were dependent on the data 
that could be assembled. However, it was useful to document 
what the experimental design matrix looked like after the 
data were assembled, as it provided a basis for seeing what 
interactions could be studied.

The approach outlined in Table 2.6 is obviously a compro-
mise, but it was decided early in the study that if empirical 
data were used, then for cost control the team would have to 
access data already being collected by transportation agen-
cies. A long history of travel time data is needed to establish 
reliability, and the cost of undertaking special instrumenta-
tion to collect these data would have been exorbitant. Instead, 
team members identified areas in which their past experience 
indicated that data were of sufficiently high quality to under-
take the research. Originally, it was thought that rural two-
lane highways could be studied, but data availability at the 
time of the study was nonexistent, and the team wanted to 
focus new data collection efforts on signalized highways, 
where reliability and congestion are greater issues.

One key factor common to all improvement types and any 
predictive relationship of reliability is traffic pressure or 
demand level. In Table 2.6, the AADT/C ratio is used as a gen-
eral measure of congestion level to ensure that roadways at all 
levels are considered in the analysis. AADT/C also may be used 
directly as an independent (predictor) variable in reliability 
relationships, but doing so masks the peaking characteristics 
of the facility. Other indicators of traffic pressure may include 
single- or multiple-hour volume-to-capacity ratios. Variations 
in traffic demand variability also influence traffic pressure.

Accurately characterizing traffic demand was a critical part 
of the research. The data collection plan was clearly oriented 
to facility-level rather than corridor- or system-level analysis. 
Existing continuous data collection activities by public agen-
cies, on which the research heavily relied, were concentrated 
on major facilities, usually freeways; data on parallel nonfree-
ways were scarce to nonexistent. During times of severe con-
gestion, traffic demand can be suppressed by travelers switching 
to alternative routes or delaying their trips. Controlling for 
this diversion effect was handled by carefully measuring traffic 
demand on the test facilities; original data collection to cap-
ture diversion was cost prohibitive for this study, given the 
wide range of conditions that needed to be addressed.

The entry in Table 2.6 for proximity to a major bottleneck 
requires elaboration. If a major bottleneck (e.g., a freeway-
to-freeway interchange) is immediately downstream of a study 
segment, then it will tend to dominate congestion on it (i.e., 
queues will routinely form on the study segment). It is, there-
fore, important to note both the presence and characteristics 

Table 2.5. Results from Previous Studies Identifying Congestion by Source

Study

Statistics Dowling Associates et al. (24) Kopf et al. (25) Kwon et al. (26) CDTC (27)

Metro area Los Angeles Seattle San Francisco Albany

Route I-10 I-405, I-90, SR 520 I-880 I-87, I-90

Freeway (mi) 10 42 45 15

Amount of data 7 days 4 months 6 months 1 year

Total Delay

Recurrent delay 69% 71% 80% 72%

Nonrecurrent delay 31% 29% 20% 28%

Nonrecurrent Sources

Incident 31% 16% 13% 28%

Work zone Not studied Not studied Not studied Not studied

Weather Not studied 9% 2% Not studied

Special events Not studied Not studied 5% Not studied

High volume Not studied 4% Not studied Not studied
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Table 2.6. Experimental Design

Factors Levels

Highway Type

Urban Rural

Freeways Signalized Arterials Freeways

Area size Small, medium l l

Large, very large l l

Base congestion Low (AADT/Ca <7) l

Moderate (AADT/C ~9) l l

Severe (AADT/C ~12) l l

Number of lanes 4 l l l

6 l l

8+ l l

Base crash rateb Low l l l

High l l l

Trucks (%) <10% l l l

>10% l l l

Traffic variabilityc Low l l l

High l l l

Traffic signal density <2/mile l

2–5/mile l

>5/mile l

Proximity to major bottleneck <1 mile downstream from segment l

>5 miles downstream from segment l

Improvement type Incident management l l l

Work zone management l l l

Weather managementd l l

Traffic device controle l l

Demand management l l

Special event management l l

Traveler information l l l

Physical expansion and/or changes l l l

a AADT/C is annual average daily traffic-to-capacity ratio (specifically, two-way hourly capacity).
b Categories were based on comparison to each state’s average crash rate by type of highway.
c For urban highways, traffic variability was determined based on the coefficient of variation (CV) of weekday peak period travel. For rural 
highways, the CV of the 24-hour volume was used.
d Weather management depended on what was being covered in other research activities, such as FHWA’s Road Weather Research and 
Development Program.
e Ramp meter control on freeways; signal control on signalized arterials.
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(e.g., capacity) of a nearby downstream bottleneck. If the 
bottleneck is upstream of the study segment, then flow onto 
the study segment will be limited or metered as a result of 
the lower discharge rate from the oversaturated bottleneck. 
This is a potential problem because the study segment may 
not ever receive enough demand to cause recurring 
congestion.

Additional subfactors varied by type of improvement or 
type of source delay. The key was ensuring that a spread of 
conditions was represented:

•	 Incidents—Presence of a usable shoulder on each side of 
the highway; levels of incident management that lead to 
low, medium, or high average incident durations;

•	 Work zones—Nature of geometric change, translated into 
Highway Capacity Manual–based capacity loss to account 
for multiple combinations (such as lane narrowing with 
and without shoulder loss): <5%, 5% to 15%, 15% to 30%, 
30% to 50%, and 50% to 75%; and

•	 Traffic signals—Type of progression: actuated, central 
control, or adaptive.

Facility-Based Spatial Measurement Scale

Because nearly all the data were based on measurements 
taken at the roadway (not the trip) level, the focus of the work 
was to define reliability at the facility level. This focus pro-
vided the most practical results for implementation, at least 
in the short run. Several spatial levels were investigated:

•	 Urban links (distance between signalized intersections and 
freeway interchanges);

•	 Urban facility segments (distance between multiple signal-
ized intersections and multiple freeway interchanges):
44 2 to 5 miles for freeways, and
44 1 to 3 miles for arterials; and

•	 Rural extended sections (long stretches of rural highways, 
probably 30 to 200 miles in length).

Temporal Measurement Scale

Reliability measurements for the following time periods were 
captured and used in the analysis:

•	 Peak hour and peak direction (based on maximum volume);
•	 Peak period (to encompass typical commuting times that 

include most delay, broken down by a.m. and p.m. and 
directionality);

•	 Midday or overnight;
•	 Daily (to encompass all delay); and
•	 Weekday versus weekend.
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C h a p t e r  3 

Introduction

The research team decided at the beginning of the project 
that an empirical approach would be used to develop predic-
tive relationships for reliability. The alternative would have 
been to conduct a large number of simulation-based experi-
ments. However, team members had conducted several previ-
ous projects using empirical data and were confident that 
these data could be used successfully. In addition, the large 
amount of empirical data that would be assembled could not 
only be used in this project but would have value for future 
research. Such an approach is not without risk. Real-world 
data can be subject to measurement error, and it was clear 
that the extremely large amount of data that would be needed 
could not be uniquely collected by the project; that is, the data 
collection itself was outside of the team’s control. Neverthe-
less, continuous travel time data collected for a sufficiently 
long period of time is an absolute requirement for empirical 
studies of reliability, as reliability is defined by how travel 
times vary over a considerable time span. Given the myriad of 
factors that influence reliability, the team estimated that a 
complete year of data would be needed.

The majority of the project’s effort was the creation of 
analysis data sets. Data set creation involved obtaining, clean-
ing, and integrating data collected primarily by public agen-
cies, but also private vendors. The research team selected 
agencies that had a long history of data collection and (based 
on the team’s experience) had data of the coverage and qual-
ity required to undertake the research. The challenges in this 
approach were twofold: (a) processing, reviewing, and reduc-
ing the raw data to summary measurements for the analysis; 
and (b) matching the different types of data geographically.

Assembling empirical data from locations around the 
country proved to be challenging, but manageable. Traffic 
data are relatively consistent from location to location, but 
incident and work zone data do not seem to follow any stan-
dard definitions. Fusion of the event data with the traffic data 

also posed problems; in some cases these had to be matched 
manually.

traffic and travel time Data

Urban Freeways

The project team assembled urban freeway data from traffic 
management centers (TMCs) that were considered to be at 
the forefront of maintaining quality traffic data. Other con-
siderations in selecting the cities were the availability of inci-
dent data from the TMCs, the presence of before-and-after 
improvement situations, and a fairly long history of archiving 
data. Table 3.1 summarizes the cities and Table 3.2 summa-
rizes the study sections. The locations of the sections appear 
in Figures 3.1 through 3.7. All these sections were considered 
in the exploratory analyses (Chapter 4) and the statistical 
modeling (Chapter 7), and several sections were used in the 
before-and-after analysis (see boldface portion of Table 3.2). 
A separate data set of urban freeways was compiled for the 
Seattle area for the congestion by source analysis.

Seattle freeways are not included in Table 3.2. Seattle data 
were used in the congestion by source analysis and before-
and-after studies (described further in Chapter 5).

The urban freeway data set was the most complete of all the 
data sets assembled for the project. In addition to traffic data, 
all the sections had incident and weather data available.

Signalized Arterials

Table 3.3 shows the data assembled for signalized arterials. 
Data were derived from both public and private sources and 
several technologies. The privately provided data were pur-
chased from Inrix, which has nationwide agreements with 
private fleets to capture travel time information. Inrix sells 
these data primarily for real-time traveler information to 
both private and public entities (such as the I-95 Corridor 

Data Collection, Assembly, and Fusion
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Coalition), but it also archives the data for other uses. In late 
2007, the research team asked Inrix to review their data qual-
ity and to provide suggestions for arterial sections they felt 
had the best quality of data and the highest sample sizes. 
However, upon review of the data, it was determined that the 
Inrix data for signalized arterials had an insufficient number 
of samples to define reliability for the research. Although the 
sources of the travel time measurements are proprietary, the 
small number of measurements during traditional peak peri-
ods, at least during the 2006 to 2007 period, led the team to 
surmise that most of the Inrix measurements were derived 
from fleet vehicles. The team was also cautious about the use 
of Inrix measurements for signalized highways, as they are 
not distance-based measurements like those taken from toll 
tags. They may have been adequate, but given the sample size 
problems, they were not tested. The net result was that only 
the two arterials in Orlando could be used for the analysis.

Table 3.1. Urban Freeway Study Section Summary

City
Number of Directional  

Study Sections
Total Directional  

Mileage

Houston, Texas 13 58.80

Minneapolis, 
Minnesota

16 62.63

Los Angeles, 
California

 3 50.27

San Francisco Bay 
Area, California

 4 19.98

San Diego, 
California

 6 28.04

Atlanta, Georgia 10 54.66

Jacksonville, 
Florida

 8 17.71

Total 60 292.09

Table 3.2. Urban Freeway Study Sections

Number City Route
Directions 
Covered

Beginning 
Landmark Ending Landmark

Length 
(mi) Time Period Covered

1 Houston U.S. 290 
Northwest

Eastbound Barker Cypress FM 1960 4.05 1/1/2006–12/31/2007

2 Houston U.S. 290 
Northwest

Eastbound FM 1960 Sam Houston 5.10 1/1/2006–12/31/2007

3 Houston U.S. 290 
Northwest

Eastbound Fairbanks–N 
Houston

W 34th 5.35 1/1/2006–12/31/2007

4 Houston U.S. 290 
Northwest

Westbound Pinemont Sam Houston 4.45 1/1/2006–12/31/2007

5 Houston U.S. 290 
Northwest

Westbound Sam Houston FM 1960 4.25 1/1/2006–12/31/2007

6 Houston U.S. 290 
Northwest

Westbound FM 1960 Barker Cypress 4.90 1/1/2006–12/31/2007

7 Houston I-45 Gulf Northbound Nasa Road 1 Dixie Farm Road 5.10 1/1/2006–12/31/2007

8 Houston I-45 Gulf Northbound Dixie Farm Road Fuqua 2.80 1/1/2006–12/31/2007

9 Houston I-45 Gulf Northbound Edgebrook Broadway 4.70 1/1/2006–12/31/2007

10 Houston I-45 Gulf Northbound Woodridge Scott Street 4.15 1/1/2006–12/31/2007

11 Houston I-45 Gulf Southbound Scott Street Woodridge 4.15 1/1/2006–12/31/2007

12 Houston I-45 Gulf Southbound Broadway Edgebrook 4.70 1/1/2006–12/31/2007

13 Houston I-45 Gulf Southbound Dixie Farm Road Nasa Road 1 5.10 1/1/2006–12/31/2007

14 Minneapolis–
St. Paul

I-35 W Northbound W 106th Street South of I-494 3.47 1/1/2006–12/31/2007

15 Minneapolis–
St. Paul

I-35 W Southbound South of I-494 W 106th Street 3.64 1/1/2006–12/31/2007

16 Minneapolis–
St. Paul

I-35 W Northbound T.H. 36 I-694 3.37 1/1/2006–12/31/2007

17 Minneapolis–
St. Paul

I-35 W Southbound I-694 T.H. 36 3.29 1/1/2006–12/31/2007

(continued on next page)
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Table 3.2. Urban Freeway Study Sections (continued)

Number City Route
Directions 
Covered

Beginning 
Landmark Ending Landmark

Length 
(mi) Time Period Covered

18 Minneapolis–
St. Paul

T.H. 36 Eastbound Fairview Avenue I-35 E 4.41 1/1/2006–12/31/2007

19 Minneapolis–
St. Paul

T.H. 36 Westbound I-35 East Fairview Avenue 4.35 1/1/2006–12/31/2007

20 Minneapolis–
St. Paul

I-35 E Northbound W 7th Street I-94 3.48 1/1/2006–12/31/2007

21 Minneapolis–
St. Paul

I-35 E Southbound I-94 W 7th Street 3.59 1/1/2006–12/31/2007

22 Minneapolis–
St. Paul

T.H. 77 Northbound T.H. 13 I-494 3.43 1/1/2006–12/31/2007

23 Minneapolis–
St. Paul

T.H. 77 Southbound I-494 T.H. 13 3.43 1/1/2006–12/31/2007

24 Minneapolis–
St. Paul

I-94 Eastbound Highway 100 I-494 7.00 09/2000–09/2001 and 
11/2004–11/2005

25 Minneapolis–
St. Paul

I-94 Westbound I-494 Highway 100 7.00 09/2000–09/2001 and 
11/2004–11/2005

26 Minneapolis–
St. Paul

I-494 Eastbound Highway 100 Highway 5/312 4.00 05/2002-05/2003 and 
11/2005–11/2006

27 Minneapolis–
St. Paul

I-394 Westbound Highway 100 Highway 169 3.17 07/2004–07/2005 and 
11/2005–11/2006

28 Minneapolis–
St. Paul

Highway 169 Southbound T.H. 62 I-494 2.00 06/2005–06/2006 and 
11/2006–11/2007

29 Minneapolis–
St. Paul

Highway 100 Northbound 36th Street I-394 2.80 04/2005–04/2006 and 
11/2006–11/2007

30 Los Angeles I-210 Westbound Foothill Highway 
and Ventura 
Freeway 
Interchange

S. Asuza Avenue and 
Foothill Freeway 
Interchange

13.63 10/2000–12/2002

31 Los Angeles I-710 Northbound Interchange: 
I-710 and I-5

I-710 and W. Ocean 
Boulevard

18.32 04/2004–06/2006

32 Los Angeles I-710 Southbound Interchange: 
I-710 and I-5

I-710 and W. Ocean 
Boulevard

18.32 04/2004–06/2006

33 Bay Area I-880 Northbound Oak Street Ramps I-980 Ramps 1.35 01/2008–12/2008

34 Bay Area I-880 Southbound Oak Street Ramps I-980 Ramps 1.35 01/2008–12/2008

35 Bay Area I-580 Eastbound Eden Canyon 
Ramps

1st Street and  
I-580 Interchange, 
Livermore

8.64 06/2002–07/2004

36 Bay Area I-580 Westbound Eden Canyon 
Ramps

1st Street and  
I-580 Interchange, 
Livermore

8.64 06/2002–07/2004

37 San Diego SR 52 Eastbound Santo Road 
Ramps

SR 52 and SR 125 
Interchange

5.96 06/2004–12/2006

38 San Diego SR 52 Westbound Santo Road 
Ramps

SR 52 and SR 125 
Interchange

5.96 06/2004–12/2006

39 San Diego I-5 Northbound Del Mar Heights 
Road Ramps

Carmel Valley Road 
Interchange

3.38 06/2001–08/2006

40 San Diego I-5 Southbound Del Mar Heights 
Road Ramps

Carmel Valley Road 
Interchange

3.38 06/2001–08/2006

(continued on next page)
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Table 3.2. Urban Freeway Study Sections (continued)

Number City Route
Directions 
Covered

Beginning 
Landmark Ending Landmark

Length 
(mi) Time Period Covered

41 San Diego I-8 Northbound North 2nd Street 
Interchange

Lake Jennings Park 
Interchange

4.68 06/2004–08/2006

42 San Diego I-8 Southbound North 2nd Street 
Interchange

Lake Jennings Park 
Interchange

4.68 06/2004–08/2006

43 Atlanta I-75 Northbound I-285 Roswell Road 5.19 01/2006–12/2008

44 Atlanta I-75 Southbound I-285 Roswell Road 5.19 01/2006–12/2008

45 Atlanta I-75 Northbound I-20 I-85 4.43 01/2006–12/2008

46 Atlanta I-75 Southbound I-20 I-85 4.43 01/2006–12/2008

47 Atlanta I-285 Eastbound I-75 GA 400 6.50 01/2006–12/2008

48 Atlanta I-285 Westbound I-75 GA 400 6.50 01/2006–12/2008

49 Atlanta I-285 Eastbound GA 400 I-85 6.03 01/2006–12/2008

50 Atlanta I-285 Westbound GA 400 I-85 6.03 01/2006–12/2008

51 Atlanta I-75 Northbound Roswell Road Barrett Parkway 5.18 01/2006–12/2008

52 Atlanta I-75 Southbound Roswell Road Barrett Parkway 5.18 01/2006–12/2008

53 Seattle SR 520 Eastbound–
westbound

I-5 I-405 7.00 01/2006–12/2008

54 Seattle SR 520 Eastbound–
westbound

I-405 SR 202 5.50 01/2006–12/2008

55 Seattle I-90 Eastbound–
westbound

I-5 West End Floating 
Bridge

1.24 01/2006–12/2008

56 Seattle I-90 Eastbound–
westbound

West End Floating 
Bridge

I-405 4.76 01/2006–12/2008

57 Seattle I-90 Eastbound–
westbound

I-405 West Lake 
Sammamish

4.00 01/2006–12/2008

58 Seattle I-90 Eastbound–
westbound

West Lake 
Sammamish

West of High Point 
Road

6.37 01/2006–12/2008

59 Seattle SR 167 Northbound–
southbound

15th Street NW SR 516 3.70 01/2006–12/2008

60 Seattle SR 167 Northbound–
southbound

SR 516 I-405 6.10 01/2006–12/2008

61 Seattle I-405 Northbound–
southbound

I-5 Tukwila SR 167 2.30 01/2006–12/2008

62 Seattle I-405 Northbound–
southbound

SR 167 112th Avenue SE 7.70 01/2006–12/2008

63 Seattle I-405 Northbound–
southbound

112th Avenue 
S.E.

I-90 2.20 01/2006–12/2008

64 Seattle I-405 Northbound–
southbound

I-90 SR 520 3.40 01/2006–12/2008

65 Seattle I-405 Northbound–
southbound

SR 520 SR 522 8.40 01/2006–12/2008

66 Seattle I-405 Northbound–
southbound

SR 522 I-5 Lynnwood 6.50 01/2006–12/2008

67 Seattle I-5 Northbound–
southbound

South 320th 
Street

I-405 Tukwila 10.40 01/2006–12/2008

68 Seattle I-5 Northbound–
southbound

I-405 Tukwila Albro Place 6.60 01/2006–12/2008

(continued on next page)
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Table 3.2. Urban Freeway Study Sections (continued)

Number City Route
Directions 
Covered

Beginning 
Landmark Ending Landmark

Length 
(mi) Time Period Covered

69 Seattle I-5 Northbound–
southbound

Albro Place SR 520 7.80 01/2006–12/2008

70 Seattle I-5 Northbound–
southbound

SR 520 Northgate 4.10 01/2006–12/2008

71 Seattle I-5 Northbound–
southbound

Northgate Snohomish/King 
County Line

5.40 01/2006–12/2008

72 Seattle I-5 Northbound–
southbound

Snohomish–King 
County Line

128th SW 8.10 01/2006–12/2008

73 Seattle I-5 Northbound–
southbound

128th SW Marine View Drive 8.40 01/2006–12/2008

74 Jacksonville I-95 Northbound Phillips Highway SR 202 5.16 03/2008–12/2008

75 Jacksonville I-95 Southbound Phillips Highway SR 202 5.16 03/2008–12/2008

76 Jacksonville I-95 Northbound SR 202 Atlantic Boulevard 4.56 03/2008–12/2008

77 Jacksonville I-95 Southbound SR 202 Atlantic Boulevard 4.56 03/2008–12/2008

78 Jacksonville I-95 Northbound U.S. 23 SR 111 (Edgewood) 3.85 03/2008–12/2008

79 Jacksonville I-95 Southbound U.S. 23 SR 111 3.85 03/2008–12/2008

80 Jacksonville I-95 Northbound SR 111 I-295 4.13 03/2008–12/2008

81 Jacksonville I-95 Southbound SR 111 I-295 4.13 03/2008–12/2008

Note: Houston data are based on toll tag–equipped probe vehicles and comprise direct travel time measurements. The remaining locations’ data comprise roadway-
based sensor measurements of volume, speed, and lane occupancy. Sections in boldface were used in the before-and-after analysis. All sections were considered by the 
statistical modeling.

Figure 3.1. Atlanta base map.
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Figure 3.2. Houston base map.

Figure 3.3. Minneapolis–St. Paul base map.
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Figure 3.4. San Francisco Bay Area base map.

Figure 3.5. Los Angeles base map.
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Figure 3.6. San Diego base map.

Figure 3.7. Jacksonville base map.
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Rural Freeways

Table 3.4 presents the sections for which rural freeway travel 
time data were assembled. The Inrix data were deemed to 
have sufficient sample sizes for the two locations indicated.

Incident and Work Zone Data

Incident and Work Zone Characteristics

Data on the basic characteristics of incidents were available 
from three sources and were used to varying degrees, depend-
ing on the team’s assessment of the data sources for each city. 
Incident and event data were provided at no cost to the proj-
ect team by the private vendor Traffic.com from their traveler 
information management system (TIMS). The TIMS data 
provided a standardized source of information for traffic 
incidents, events, scheduled and unscheduled construction, 
and other events that could affect traffic conditions (such as 
severe weather or transit delays).

Incident data are gathered directly by Traffic.com observ-
ers using numerous sources of information, such as video 
images, aircraft, mobile units, and police and emergency 
communication frequencies. In some cities, Traffic.com observ-
ers are stationed on the floor of the regional TMC. In other 
cities, Traffic.com observers are mobile or are stationed in a 
connected operations center.

The incident data from Traffic.com were chosen for this 
study because it has several unique attributes:

•	 All reported incidents are entered. Traffic.com does 
attempt to confirm reports, and will indicate in their sys-
tem when the reported incident has been confirmed. Thus, 
they provide both reported incidents, as well as confirmed 
incidents;

•	 Traffic.com incident data are collected by an independent 
entity that is not involved in the traffic or emergency man-
agement process. It was reasoned that Traffic.com staff 
could gather more complete and accurate data because 

Table 3.3. Signalized Arterial Study Sections

City Arterial From To
Length 

(mi)

Travel Time Data

Data Technology Period

Orlando Section 1: SR 50 eastbound Florida Turnpike SR 408W 6.85 Tag-based probe March 2008+

Section 2: SR 50 westbound SR 408W Florida Turnpike 6.85 Tag-based probe March 2008+

Section 3: U.S. 441 northbound SR 417 SR 408 10.67 Tag-based probe March 2008+

Section 4: U.S. 441 southbound SR 408 SR 417 10.67 Tag-based probe March 2008+

Section 5: U.S. 441 northbound SR 408 N John Young 
Parkway

4.35 Tag-based probe March 2008+

Section 6: U.S. 441 southbound N John Young Parkway SR 408 4.35 Tag-based probe March 2008+

Los Angeles Santa Monica Boulevard I-405 N Gardner Street 6.9 GPS probe (Inrix) 2006–2007

Phoenix E Camelback Road 44th Street Highway 51 4.2 GPS probe (Inrix) 2006–2007

Minneapolis–
St. Paul

Washington Avenue County Highway 153 U.S. 65 3.4 GPS probe (Inrix) 2006–2007

Miami U.S. 1 17th Avenue Le Jeune Road 3.8 GPS probe (Inrix) 2006–2007

Houston Westheimer Road W Sam Houston I-610 6.9 GPS probe (Inrix) 2006–2007

Note: Probe-tag technology provided direct estimates of travel time over the segment. Inrix-provided data were supplied as speed estimates by link (approximately 0.5 to 
1 mile long). Only the Orlando sections were used in the analysis because of sample size limitations on the other sections.

Table 3.4. Rural Freeway Study Sections

State Route From To Length

Travel Time Data

Data Technology Period

Texas I-45 Exit 213, Navarro County Exit 267, Ellis County 54.1 GPS probe (Inrix) 2006–2007

South Carolina I-95 South Carolina–Georgia Border SR 68, Hampton County 38.2 GPS probe (Inrix) 2006–2007

http://www.Traffic.com
http://www.Traffic.com
http://www.Traffic.com
http://www.Traffic.com
http://www.Traffic.com
http://www.Traffic.com
http://www.Traffic.com
http://www.Traffic.com
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information gathering and reporting were their sole focus 
(in contrast, public agency traffic managers typically must 
manage incidents and crises and record relevant informa-
tion at the same time). Additionally, the Traffic.com incident 
data are routinely reviewed to ensure quality data entry by 
Traffic.com observers;

•	 Traffic.com incident data contain the sequence of events 
as an incident is reported, responded to, and cleared. For 
example, an incident record is updated and appended 
whenever the status or conditions of the incident change. 
This information provides more specificity about the inci-
dent; and

•	 Traffic.com incident data provided consistent data attri-
butes in all of this study’s cities and also used unambiguous 
location referencing.

The following incident attributes were used in this study:

•	 Unique traffic item identifier—A unique identifier for 
each record or observation;

•	 Unique original traffic item identifier—A unique identi-
fier for the original traffic incident that did not change as 
information about the same incident was updated;

•	 Metropolitan area—Unique city identifier;
•	 Roadway and location identifier—Unique combination 

of identifiers for the location.
•	 Type of traffic item—Possible entries include:

44 Accident;
44 Alert;
44 Congestion;
44 Disabled vehicle;
44 Mass transit;
44 Miscellaneous;
44 Other news;
44 Planned event;
44 Road hazard;
44 Scheduled construction;
44 Unscheduled construction; and
44 Weather.

•	 Verification—An indication of whether the incident or 
event was verified;

•	 Number of lanes blocked—Numeric entry for number of 
travel lanes that were blocked; and

•	 Start and ending times—The combination of these attri-
butes provided incident duration. The start time was the 
time when the lane or shoulder blockage began; the end 
time was when the blockage was cleared.

Data collected by TMC operators and entered into consoles 
at the TMC and/or entered by freeway service patrols were 
also available for some cities. The type of data collected by these 
entities varies, but they generally correspond to Traffic.com  

data; the key items of location, duration, and lane blockage 
are the same. The sources of incident data used in the urban 
freeway analysis were as follows:

•	 Atlanta—TMC data were the primary source (this included 
work zones and special events), checked against both 
Traffic.com and Georgia DOT crash data;

•	 Houston—Traffic.com data were found to match TMC 
(Transtar) incident data very well, and since Traffic.com 
contains work zones and special events, was the source of 
incident information;

•	 Minneapolis—Traffic.com data;
•	 San Diego, Los Angeles, and San Francisco Bay Area—

Traffic.com data;
•	 Seattle—Special data set, a fusion of TMC and police 

computer-aided dispatch data; and
•	 Jacksonville—TMC data.

Incident Activity Data

Areas with incident management differ substantially in the 
institutional arrangements and policies that govern their day-
to-day operations. Many of these incident management 
approaches are subjective and did not lend themselves to the 
quantification that was needed for the statistical modeling. 
Initially, it was thought that the approach taken in SHRP 2 
Project L06, Institutional Architectures to Advance Opera-
tional Strategies, could be used. The L06 approach is based on 
adapting the capability maturity model developed for soft-
ware engineering to operations activities in transportation 
agencies. The capability maturity model in software engi-
neering is a model of the maturity of the capability of certain 
business processes. A maturity model can be described as a 
structured collection of elements that describe certain aspects 
of maturity in an organization; the model aids in defining and 
understanding an organization’s processes. It was hoped that 
the resulting levels could be used as indicators of the degree of 
sophistication in policies and institutional arrangements with 
regard to incident management. Unfortunately, Project L06’s 
capability maturity model was too general and nonspecific to 
incident management to be of use in the statistical modeling 
for this project. Instead, the team used the Traffic Incident 
Management (TIM) Self-Assessment procedure developed by 
FHWA to indicate the sophistication of incident management 
arrangements for modeling purposes. This procedure has the 
advantages of capturing a wide range of activities in a single 
numeric score and being widespread among operators to facil-
itate application of the final models. The TIM Self-Assessment 
consists of three primary assessment areas:

1. Program and institutional issues;
2. Operational issues; and
3. Communications and technology issues.

http://www.Traffic.com
http://www.Traffic.com
http://www.Traffic.com
http://www.Traffic.com
http://www.Traffic.com
http://www.Traffic.com
http://www.Traffic.com
http://www.Traffic.com
http://www.Traffic.com
http://www.Traffic.com
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Composite scores are given for each of these areas (there are 
multiple attributes in each area), as well as a single overall 
score. The team explored using both the individual scores, as 
well as the overall score, in the modeling. Unfortunately, self-
assessment scores were only available for three cities, which 
were not enough for model development. Nonetheless, pre-
liminary (but inconclusive) results are presented.

Weather Data

Overview

Weather data were obtained from the National Climatic Data 
Center (NCDC) of the National Oceanic and Atmospheric 
Administration. NCDC, the world’s largest active archive of 
weather data, produces climate publications and responds to 
data requests from all over the world. NCDC offers a wide 
range of climate products and services, including a surface cli-
mate product that provides local climatological data, as well as 
marine and upper-air data.

The local climatological data product consists of hourly, 
daily, and monthly climatological summaries for approxi-
mately 1,600 U.S. locations (daily summary forms are not 
available for all stations). Since the end of January 2005, the 
local climatological data have been processed through auto-
mated quality control processing. About 480 first-order sta-
tions also undergo additional quality control after the end of 
the month.

Data Access

Similar to other NCDC products and services, the local cli-
matological data are available through a variety of media, 
including online access, annual subscriptions, CD-ROMs, 
DVDs, computer tabulations, maps, and publications (1). 
Free access to NCDC data is granted to certain users, such 
as academic and educational users, using reverse domain 
lookup. The local climatological data for specific locations 
and specific time frames are available for download. Final 
data loads occur on a monthly basis, usually overnight. Data 
gaps may exist during the time frame of previous and current 
final data loads.

Data Format and Description of Hourly Data

The hourly data files used for the research contained the fol-
lowing basic weather elements:

•	 Sky condition—Cloud height and amount (clear, scat-
tered, broken, and overcast) up to 12,000 feet;

•	 Visibility (to at least 10 statute miles);
•	 Basic present weather information—Type and intensity 

for rain, snow, and freezing rain;

•	 Obstructions to vision—Fog, haze;
•	 Pressure—Sea-level pressure, altimeter setting;
•	 Ambient temperature and dew point temperature;
•	 Wind—Direction, speed, and character (gusts, squalls);
•	 Precipitation accumulation; and
•	 Selected significant remarks, including variable visibility, 

precipitation beginning and ending times, rapid pres-
sure changes, pressure change tendency, wind shift, and 
peak wind.

Geometric, Operating,  
and Improvement Data

Geometric data were obtained from satellite imagery (lane 
configurations) and the 2007 Highway Performance Moni-
toring data. Operating and improvement data were obtained 
directly from state DOTs. The most important data in this 
category were those elements related to calculating capacity 
for each individual link.

Data processing procedures

Urban Freeway Data Processing

Data for all urban freeway sections were centrally processed 
to ensure consistency. The processing began with quality 
control of the data as received from the TMCs. The data qual-
ity checks used were those developed for FHWA (2). Data 
were aggregated to 5-minute by-lane summaries. Aggrega-
tion rules followed those in a forthcoming ASTM standard 
(ASTM E2665-08). Two levels of spatial aggregation were 
done on the 5-minute-interval data:

1. Station level—Data were aggregated laterally over all lanes 
in a direction; and

2. Section level—Station-level data were aggregated longi-
tudinally for all stations on a study section.

The aggregation process is shown in Figure 3.8. From the 
section-level data, a procedure for estimating the start and 
end times of the peak hour and peak period was applied; this 
procedure is detailed in Chapter 4 under the section “Defin-
ing Peak Hour and Peak Period.” Analysts then reviewed the 
start and end times and made adjustments based on local 
knowledge.

Section-level statistics were computed for each time slice to 
be used in the analysis:

•	 Peak hour (weekdays only);
•	 Peak period (weekdays only);
•	 Counterpeak hour (weekdays only; the opposite time slice 

from the peak hour; that is, if the peak hour is in the morn-
ing, then the counterpeak is in the afternoon);
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•	 Midday;
•	 Week day (all hours of the day); and
•	 Weekend and holiday (all hours of the day).

Signalized Arterial Data Processing

Calculating travel time and reliability statistics from toll tag–
equipped probe vehicles is straightforward—travel times are 
measured directly so there is no need for transformations as 
shown in Figure 3.8. Data quality control is different, how-
ever. Because of the opportunities for vehicles to make incom-
plete trips through a section of arterial (such as stopping at 
adjacent land uses), some travel times will be detected as 
being excessively high. As a result, probe data quality controls 

have been focused on eliminating outliers. In FHWA’s Mobil-
ity Monitoring and Urban Congestion Report Project (3), 
the quality control criterion for probe data states that two 
consecutive travel times cannot change by more than 40%. 
Another method proposed by researchers at the University of 
Washington is that a travel time cannot be more than one 
standard deviation above or below the moving average of the 
10 previous entries.

These methods work well for freeway data, for which 
probe data coverage is high. However, probe data on arterials 
are considerably sparser. Many of the outliers in arterial data 
will pass through this method undetected because there are 
not enough immediate adjacent observations. Instead of 
relying on continuous observations, arterial data quality 

Figure 3.8. Study sections mapped to original experimental design  
matrix (3).



43

control focused more on the overall spread of the data. 
Examination of the arterial data led the team to develop the 
following quality control processing rules, all of which were 
applied to the data:

1. Any days with extremely low or high travel times are 
removed by visual inspection.

2. Rank all travel time for a section, and treat any value greater 
than the 75th percentile plus 1.5 times the interquartile 
distance, or less than the 25th percentile minus 1.5 times 
the interquartile distance, as an outlier. This technique is 
robust because it uses the quartile values instead of variance 
to describe the spread of the data.

3. Two consecutive travel times cannot change more than 
40%.

4. A travel time cannot be more than one standard deviation 
above or below the moving average of the 10 previous 
entries. These 10 previous entries must be continuous and 
valid data.

Rural Freeway Data Processing

The rural freeway portion of the study relied on speed data 
supplied by Inrix on Traffic Message Channel links. From a 
processing standpoint, Inrix data were treated in the same 
way as detector data. However, because the Inrix data were 
provided by relatively short links, and many links comprised 
the very long rural segments used in the research, a trajectory-
based method was used to estimate travel times for the 
entire segment. The vehicle trajectory method traces the 
vehicle trip in time and applies the link travel time corre-
sponding to the precise time in which a vehicle is expected to 
traverse the link. For example, a section travel time that 
begins at 7:00 a.m. will use a link travel time for 7:00 a.m. to 
7:05 a.m. at the trip origin, but could use a link travel time 
from 7:05 a.m. to 7:10 a.m., or from 7:10 a.m. to 7:15 a.m., at 
the trip destination. The vehicle trajectory method attempts 
to more closely model the actual link travel times experienced 
by motorists as they traverse the freeway system. Figure 3.9 
shows how the vehicle trajectory method works compared 
with the snapshot method used for the much shorter urban 
freeway sections. In the trajectory method, the vehicle stair-
steps through the time–distance matrix (rows are time and 
columns are distance along the route, as indicated by detector 
location); these are shown as the gray arrows moving up from 
right to left. Thus, the travel time speed at any given location 
depends on when the vehicle is at that location. The snapshot 
method simply takes all the travel times and speeds for a time 
slice along the entire route (black arrows moving straight 
across from left to right); that is, speeds are not considered to 
be time dependent.

Calculation of Free-Flow Speed

The distribution statistics for the Travel Time Index (TTI) 
depend on measuring travel time relative to an ideal or free-
flow speed. Deviation from the free-flow speed indicates that 
congestion has occurred. For urban freeways, the research 
team used a constant value of 60 mph for all sections. This is 
a well-established threshold for measuring congestion on 
urban freeways. For signalized highways and rural freeways, 
the situation is more complex due to variations in speed lim-
its and signal-influenced delay, even at very low volumes. For 
these sections, the 85th percentile speed was used as the free-
flow speed. In all cases, if section speeds were higher than the 
free-flow speed, the TTI was set to 1.0; no credit was given for 
going faster than the free-flow speed.

Final Data Set for  
Statistical analyses

As the preceding discussion and figures show, a large array of 
data sets at various levels of spatial and temporal aggregation 
was created. The end result of the processing and fusing was 
the data set used in the statistical analyses. This data set was 
highly summarized, which was necessary because reliability is 
defined over a long period of time to allow all the factors to 
exert influence on it. Each observation in the statistical analy-
sis data set was for an individual section for an entire year for 
each of the daily time slices studied: peak hour, peak period, 
midday, weekday, and weekend and holiday. The data set con-
tained the data types described in the following subsections; 
the data were intended to capture characteristics for an entire 
year on the study section. Appendix A shows the variables in 
the final data set.

Reliability Metrics

•	 Mean, standard deviation, median, mode, minimum, and 
percentiles (10th, 80th, 95th, and 99th) for both the travel 
time and the TTI;

•	 Buffer indices (based on mean and median), Planning Time 
Index, skew statistic, and Misery Index; and

•	 On-time percentages for thresholds of median plus 10% 
and median plus 25%; and average speeds of 30, 45, and 
50 mph.

Operations Characteristics

•	 Areawide and section-level service patrol trucks (average 
number of patrol trucks per day);

•	 Areawide and section-level service patrol trucks per mile 
(average number of patrol trucks per day divided by center-
line mile);

•	 Traffic Incident Management Self-Assessment scores;
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•	 Quick clearance law (yes or no);
•	 Property damage only move-to-shoulder law (yes or no);
•	 Able to move fatalities without medical examiner (yes  

or no);
•	 TMC staff per mile covered; and
•	 Number of ramp meters, dynamic message signs, and 

CCTVs.

Capacity and Volume Characteristics

•	 Start and end times for the peak hour and peak period;
•	 Calculated and imputed vehicle miles traveled;

•	 Demand-to-capacity and annual average daily traffic-to-
capacity ratios:
44 Average of all links on the section, and
44 Highest for all links on the section; and

•	 Annual average daily traffic-to-capacity ratios for down-
stream bottlenecks by ramp merge area.

Incident Characteristics

•	 Number of incidents (annual);
•	 Incident rate per 100 million vehicle miles;
•	 Incident lane hours lost (annual);

Figure 3.9. Snapshot and vehicle trajectory methods of estimating travel times from spot speeds (4).
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•	 Incident shoulder hours lost (annual); and
•	 Mean, standard deviation, and 95th percentile of incident 

duration.

Work Zone Characteristics

•	 Number of work zones (annual);
•	 Work zone lane hours lost (annual);
•	 Work zone shoulder hours lost (annual);
•	 Mean, standard deviation, and 95th percentile of work 

zone duration.

Weather Characteristics

•	 Number of (annual) hours with precipitation amounts 
greater than or equal to 0.01, 0.05, 0.10, 0.25, and 0.50 
inches;

•	 Number of (annual) hours with measurable snow;
•	 Number of (annual) hours with frozen precipitation; and
•	 Number of (annual) hours with fog present.

Assigning Incidents to Study Sections

Incidents were assigned spatially to the study sections based on 
the linear referencing in the traffic and incident data sets. Only 
incidents that actually occurred on the section were included. 
Flow on a study section is influenced by incidents that occur 
immediately downstream of that section, and incidents that 
occur just beyond the extreme upstream end of the study sec-
tion will influence the downstream study section. The decision 
to include only on-section incidents was based on the appli-
cation of the statistical models: it is far easier for practitioners 
to develop section-specific data than to have to compile off-
section data, as well. Also, the goal of the statistical modeling is 
not to build a deterministic model of traffic flow but to try to 
capture the cumulative, annual flow characteristics of a section.

For the peak hour, peak period, and midday time slices, an 
incident was assigned to the time slice if it began in the time 
slice, ended in the time slice, or spanned the time slice. To 
capture the effect of incidents that occurred immediately 
before the start of a time slice, a 15-minute window was allowed. 
The lane hours lost calculation was based on those that were 
lost solely within the period. For example, consider a peak hour 
of 7:30 to 8:30 a.m. If an incident began at 8:00 a.m. and lasted 
until 9:15 a.m. (a total of 75 minutes), only the lane blockages 
from 8:00 to 8:30 a.m. would count.

Description of Seattle  
Study area

This section briefly describes the portions of the Seattle free-
way system included in the congestion by source analyses; 
more detail is provided in Appendices C and D. Figure 3.10 

illustrates the 21 study sections. Each of these roadway seg-
ments was studied by direction, leading to an analysis of  
42 study sections.

Five freeways were included in the analysis: I-5, I-405, I-90, 
SR 167, and SR 520. They were broken into multiple segments 
based on a combination of geometric and travel patterns. The 
segmentation of each roadway is described briefly below.

Freeway I-5

I-5 was divided into six segments, named (from south to 
north) South, Tukwila, Seattle central business district (CBD), 
Seattle North, North King, Lynnwood, and Everett. The basic 
attributes of these six segments are discussed below.

South is the longest segment. It is primarily four lanes 
wide, with a high-occupancy vehicle (HOV) lane on the left 
side, and travels from the southern edge of WSDOT’s instru-
mented roadway system to the southern I-5/I-405/SR 518 
interchange. Its traffic is heavily directional (relative to its 
capacity). It contains a very large hill located at the northern 
end of the segment. The hill can affect congestion south-
bound in the evening peak period due to the slow speeds of 
buses and trucks climbing the grade, especially those entering 
I-5 from I-405 and SR 518. Both directions of traffic can be 
affected by downstream congestion.

Tukwila, the next segment to the north, goes from the 
southern I-5/I-405 interchange to just north of Boeing Field; 
it is also mostly four general-purpose (GP) lanes wide, with 
one inside HOV lane. The northern end of Boeing Field is the 
approximate end of the backup from much of the recurring 
congestion that occurs in the a.m. and many p.m. peak periods. 
Much of that congestion stems from bottlenecks occurring in 
the next roadway section to the south. In the southbound 
direction of travel this segment tends to be relatively conges-
tion free (the congestion tends to be bottlenecked to the north 
in the downtown sections). It occasionally suffers from back-
ups in the downstream segment, when very severe conges-
tion entering I-405 northbound combined with queuing on 
the South Center Hill can interfere with traffic flow. Other-
wise, most congestion is commonly caused by disruptions of 
some kind.

The Seattle CBD section, the next section to the north, 
contains a significant number of bottlenecks in closely spaced 
succession. Unfortunately, they are so closely spaced that it 
was not practical to divide them into separate roadway sec-
tions. At its southern end, this is a four-lane GP, one-lane 
HOV roadway. One of the GP lanes is dropped at the West 
Seattle freeway interchange. This is followed by the inter-
change with I-90, which includes a collector–distributor lane 
that also serves as a mechanism for separating downtown 
ramps from some of the mainline traffic flows. Immediately 
north of the I-90 interchange is the southern terminus of the 
I-5 express lanes, a reversible roadway that operates primarily 
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southbound in the a.m. and northbound in the p.m. In this 
stretch of highway, the left-hand HOV lane first becomes a 
GP lane, and then becomes an exit-only lane to the north-
bound express lanes. When the express lanes are operating 
southbound, these lanes become part of a left-hand exit to 
downtown. Another of the through lanes also becomes an exit-
only ramp to downtown, leaving only two GP through lanes. 
(One additional lane exists as part of the collector–distributor 
to I-90 and other downtown ramps.) This is another bottleneck 
location. This area is followed by a series of on- and off-ramps, 
including the on-ramp from the collector–distributor, which 
provides the on-ramps from I-90, to downtown. This section of 
the freeway also moves underneath the Washington State Con-
vention Center, as part of a short tunnel segment, with modest 
visibility and sight distances. The collector–distributor becomes 
the third lane when it rejoins the main roadway underneath the 
convention center, and then a fourth lane is added part way 
through downtown as an add lane from one of the downtown 
ramps. No HOV lane exists on this stretch of freeway. Finally, 

as the roadway exits the downtown Seattle area, it reaches 
the end of this roadway segment at the SR 520 interchange. 
The right two lanes become exit-only lanes to SR 520. These 
lanes are often stop-and-go during both peak periods due to 
congestion on SR 520. One final bottleneck appears in the 
last ramp from downtown (Mercer Street), a left-hand on-
ramp that sets up a C-class weave, as many vehicles entering 
at Mercer wish to be in the right-hand lanes in order to exit 
to SR 520.

All these features exist in the southbound direction. The 
only difference is that the express lanes terminus is an add 
lane located just south of the downtown core. Consequently, 
it has less impact on the overall freeway performance than the 
northbound terminus does. However, the C-class weave from 
SR 520 to Mercer (again, a left-hand on-ramp followed by a 
right-hand exit lane) is a bottleneck, as are the effects of the 
downtown exit- and on-ramps.

The North Seattle roadway section is the next section to the 
north. This section starts at the I-5/SR 520 interchange, goes 

Figure 3.10. Map illustrating Seattle study sections.
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across the Ship Canal Bridge, and continues to the northern 
terminus of the express lanes. This section of roadway has 
only modest routine northbound congestion. However, 
southbound, it is affected by a C-class weave from the NE 
45th Street and NE 50th Street entrances to the SR 520 inter-
change. In addition, the Ship Canal Bridge is exposed to wind, 
adding to the factors that affect throughput on this roadway. 
This roadway is four GP lanes wide in the southern section, 
and becomes three lanes wide with an add–drop lane to Lake 
City Way (about half way through the study segment). No 
HOV lane exists in this section of the roadway. Note that this 
study does not include the express lanes themselves, which 
serve as the HOV facility (and as additional GP capacity) dur-
ing the peak directional movements.

The North King section of the roadway starts with the 
northern entrance of the express lanes and continues to the 
King County–Snohomish County line. It is four lanes wide, 
with an HOV lane on the left. The HOV lane starts (ends) at 
the express lanes terminus. This roadway experiences routine 
congestion associated with that terminus in both directions. 
When the express lanes are operating northbound, consider-
able weaving takes place into and out of the left-hand HOV 
lane. Northbound, modest volumes of vehicles move from the 
left-hand entrance to the GP exits on the right side of the free-
way. Southbound, this section of roadway has minor merge-
related slowdowns, both when vehicles enter the express lanes, 
and when the express lanes are closed, as I-5 loses two lanes of 
capacity at that time (one GP lane and the HOV lane).

Lynnwood is the next section of I-5 to the north. This sec-
tion of roadway goes from the King County–Snohomish 
County line to SE 128th Street, and it includes the northern 
I-5/I-405 interchange. This section of roadway has four GP 
lanes and one HOV lane. Additional lanes exist at the I-405 
interchange to smooth flow between the freeways.

Everett, the final I-5 section, is primarily three GP lanes 
wide with an HOV lane on the left side. Of greatest signifi-
cance for this study is that in 2006, north of the instrumented 
roadway, a major construction project was underway. This 
project included the extension of the HOV lanes and signifi-
cant redesign of the ramps in the city of Everett. These con-
struction activities created some backups that extended back 
onto the Everett study section, mostly late at night, but occa-
sionally on weekends.

Freeway I-405

The I-405 freeway was divided into six sections. From the 
south they are

•	 South;
•	 Kennydale;
•	 Eastlake;

•	 Bellevue CBD;
•	 Kirkland–Redmond; and
•	 North.

The South section contains two GP lanes and one left-hand 
HOV lane. This section extends from the I-405/I-5 interchange 
to the SR 167 interchange. Bottlenecks occur at both of these 
interchanges, with the most significant of those being the 
northbound movement. The southern end of this study seg-
ment is also significantly affected by on- and off-ramps leading 
to and from the South Center Mall. (Short ramp lengths and 
the narrow freeway lead to difficulty merging and the com-
mensurate increase in traffic disruption from these ramps.)

The Kennydale section is among the most routinely con-
gested sections in the region. It stretches from the SR 167 inter-
change to 2 miles south of the I-90 interchange. This stretch 
of road includes the merge (northbound) from SR 167 and 
diverge (southbound) from I-405 to SR 167. Both of these 
movements cause major bottlenecks because they are rou-
tinely over capacity. North of the SR 167 interchange on I-405 
are a series of ramps to and from the city of Renton, which 
creates considerable ramp disruptions. The freeway then goes 
up and over a major hill (the Kennydale Hill) which can slow 
heavy trucks, and there is significant heavy truck traffic on this 
route as it is the primary route for travel from the region’s 
major distribution centers to I-90 and all points east. Because 
the roadway is only two GP lanes and one HOV lane through 
most of this entire section (there are some add–drop lanes), 
any slow-moving vehicle is likely to create minor congestion. 
The roadway is severely over capacity, especially northbound 
in the morning and southbound in the evening.

The Eastlake section of the freeway is a short 2-mile seg-
ment designed to examine the effects of I-90 interchange 
congestion. In the peak directions, this segment is very con-
gested; in the off-peak directions it flows well.

The Bellevue CBD section stretches from the I-90 inter-
change just south of the Bellevue CBD to the SR 520 inter-
change just north of the Bellevue CBD. Bellevue is the second 
largest city in the region and a significant urban center. Con-
siderable traffic uses I-405 to reach Bellevue, and the freeway 
serves a considerable pass-through movement, as well. For 
traffic coming from the north (including SR 520, which serves 
the Microsoft headquarters complex), I-405 is the primary 
connection to I-90 and the other bridge across Lake Washing-
ton. As a result of the combination of through movements, 
large Bellevue-based ramp movements, and the congestion 
that occurs at the I-90 and SR 520 interchanges, this section of 
roadway is routinely congested during peak periods.

The Kirkland–Redmond roadway section has a southern 
boundary at the SR 520 interchange and travels north to the 
SR 522 interchange. Unlike I-405 south of Bellevue (which 
although directional has a strong reverse direction movement), 
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the Kirkland–Redmond section is very directional, southbound 
in the morning, northbound in the evening. The roadway 
changes width from three GP lanes and one HOV lane north of 
the NE 80th Street interchange to four GP lanes and one HOV 
lane between SR 520 and Kirkland. In addition to severe demand- 
related congestion at most of the major on-ramps, the roadway 
study segment has a very steep hill (uphill southbound) just 
south of the SR 522 interchange.

The North study segment is the last of the I-405 roadway 
segments. It is a two-GP, one-HOV lane section that extends 
from SR 522 to the northern I-5/I-405 interchange. This sec-
tion has no significant bottleneck points, but it does have some 
simple capacity issues, primarily southbound in the morning.

Freeway I-90

The I-90 roadway was divided into four segments from Issaquah 
to downtown Seattle. These are (moving from west to east) 
Issaquah, Bellevue, Bridge, and Seattle.

The Issaquah segment is a three-GP-, one-HOV-lane road-
way section that travels 6 miles from the city of Issaquah 
toward Bellevue. While there are no significant geometric 
bottlenecks on this study segment, it does contain three very-
high-volume ramps. The result is routine a.m. congestion 
westbound. In the evening, some off-ramp queuing can cause 
delays in the right-hand lanes of the roadway eastbound.

The Bellevue study segment covers the remaining distance 
between Issaquah and the I-405 interchange. Two additional 
on-ramps add traffic, although an additional lane is added in 
this section, before becoming a drop lane at the I-90 inter-
change. As with the Issaquah eastbound p.m. movement, this 
roadway section can be affected by significant off-ramp queu-
ing to I-405, in this case, in the westbound a.m. peak period. 
On very bad days queues on I-90 from the downstream sec-
tion of I-90 can also reach the western portions of this seg-
ment during the a.m. peak period.

The Bridge study section contains both I-90’s Lake Wash-
ington floating bridge and the stretch of I-90 that crosses 
Mercer Island, which also contains a short tunnel. A revers-
ible express lane also sits in the middle of this study section. 
(The express lane section is not included in this analysis.) The 
eastern end of the express lane is located just to the west of 
I-405. The eastbound exits from the express lanes cause little 
disruption because of direct ramps from that facility to the 
I-405 interchange and an add lane to the I-90 mainline. West-
bound it causes congestion only when the express lane is east-
bound, in which case the HOV lane must merge into the three 
GP lanes, causing a merge bottleneck. In addition to the 
ramps from Mercer Island to I-90, several other locations on 
this section of roadway can become bottlenecks under spe-
cific conditions. The most significant are the exit from the 
tunnel section (which leads to the bridge, and creates some 

visibility issues when the sun is at certain angles) and the 
bridge itself (where drivers can also suffer from considerable 
visual distraction).

The Seattle section is the last section on I-90. It covers from 
the western end of the I-90 floating bridge, through tunnels 
underneath Capitol Hill, and to I-5, where I-90 ends. West-
bound travelers can exit to downtown Seattle or turn north 
or south on I-5. All three of these ramps can experience 
queues that extend back onto I-90 depending on the time of 
day, the types of events occurring in downtown Seattle, and 
the congestion found on I-5. Eastbound, this roadway section 
has only one entrance ramp, other than the ramps from I-5 
or downtown. Merge congestion is therefore modest. How-
ever, backups from the Bridge section of I-90 can easily extend 
back onto this section, creating congestion.

Freeway SR 167

This roadway is east of I-5, and travels in a north–south direc-
tion through the region’s primary warehouse and distribu-
tion centers. It also serves manufacturing areas and a growing 
residential population, especially to the far south. This road-
way was divided into two study sections for this project, Auburn 
and Renton. The entire roadway contains two GP lanes and 
one HOV lane. The HOV lane is now a high-occupancy toll 
lane, but in 2006 it was still a traditional HOV lane.

The Auburn section extends from the SR 18 interchange 
(the southern end of the surveillance equipment, although not 
the end of the SR 167 freeway), to the city of Kent. This stretch 
of roadway has no major geometric bottlenecks northbound, 
but it does suffer from on-ramp merge congestion due to 
high traffic volumes northbound in the a.m. Southbound in 
the p.m., it has a bottleneck at the southern terminus to the 
study section, where the HOV lane ends (becoming a GP lane), 
and one of the GP lanes becomes an exit-only lane to SR 18. 
In addition, due to the restricted number of lanes, traffic south 
of this bottleneck can move very slowly in the p.m. peak, 
further worsening the queues observed southbound on the 
study section.

The Renton study section travels from Kent to the I-405 
interchange, which is a significant bottleneck. The ramp queues 
from northbound SR 167 to I-405 frequently back up onto SR 
167 in both peak periods (although the a.m. peak is the pri-
mary movement), as I-405 simply does not have the capacity 
to accept the SR 167 traffic volumes. Southbound the SR 167 
section also congests because of very high traffic volumes. There 
are no significant geometric causes for those delays.

Freeway SR 520

The final roadway in the study section, SR 520, was divided 
into two sections, called Seattle and Redmond.



49

The Seattle section goes from I-5 across the Lake Washing-
ton floating bridge to I-405. This section is two GP lanes. 
There is an HOV lane only in the westbound direction; that 
HOV lane ends in a lane drop at the approach to the bridge 
itself. The bridge has no shoulders. The lack of shoulders 
means any incident occurring on the bridge approaches or on 
the bridge itself blocks a lane. On the western end of the study 
section are two ramps, one of which leads to the University of 
Washington. This roadway operates near capacity in both 
directions over 13 hours each weekday. Because both direc-
tions are capacity constrained, the directional volumes are 
roughly equal throughout the day. The primary difference in 
the measured performance of the two directions for this 
roadway is the location of the bridge relative to the entire 
study section. Eastbound, the study section travels a little over 
1 mile from I-5 to the bridge itself, and all of this distance is a 
two-lane roadway. This means that the measured queue east-
bound is never larger than roughly 1 mile. Once the queue 
grows larger than 1 mile, it extends onto I-5, where its effects 
are felt in the southbound Seattle North study section or the 
northbound Seattle CBD study section. Conversely, in the 
westbound direction, the study section allows for the mea-
sured queue from the bridge deck to extend for more than 
3 miles. In the heart of the p.m. peak period, this entire road-
way section is routinely stop-and-go congestion.

The Redmond study section includes that section of SR 
520 from I-405 east to the end of the freeway, a signalized 
intersection with SR 202 and other local roads. The freeway 
branches into two parts as it ends, each of which ends at a 
signal. The freeway passes by the Microsoft headquarters 
campus. Consequently, significant traffic volumes move toward 
the center of this study section in the a.m. peak period and 
away from the center of the study section in the p.m. peak 
period. In addition, the eastern end of the roadway serves a 
large residential population that travels to both Bellevue and 
Seattle. Thus the a.m. peak also contains a large westbound 

home-to-work movement that extends the length of the 
study section, while the p.m. peak contains a large work-to-
home movement. The signalized intersections at the eastern 
end of the facility create this section’s only major bottleneck. 
The signals cause significant congestion to extend back from 
the eastern end of the facility during the p.m. peak period. 
In the morning, these lights simply serve to meter traffic 
entering the roadway, allowing the roadway to operate fairly 
well. The only other bottlenecks that occur are minor ramp 
delays leading to Microsoft (these can add considerable delay 
to travelers headed to Microsoft, but they do not significantly 
affect the main freeway lanes) and queues that originate on 
the Seattle section of SR 520 but extend back onto the Red-
mond section. This happens, on average, at least once a week, 
usually as a result of crashes or other major traffic incidents 
on the Seattle section of the roadway.
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C h a p t e r  4

Overview

As discussed in Chapter 3, the research team took an empiri-
cal approach to the problem of reliability estimation. Before 
conducting the three main analyses (congestion by source, 
before-and-after studies of reliability improvements, and 
statistically based predictive relationships for reliability), 
exploratory analyses were conducted to (a) explore the basic 
characteristics of reliability and (b) establish basic parameters 
and principles for measuring and analyzing reliability. These 
analyses formed the basis for the more detailed analyses that 
followed, but they also offer valuable guidance on their own 
for others interested in measuring and studying reliability.

recommended reliability 
Metrics for the research  
and General practice

The research team concluded that all potentially useful reli-
ability metrics communicate information about the size and 
shape of the underlying travel time distribution: that is, the 
history of travel times on a facility, corridor, or network. (The 
Phase 1 report more completely describes the wide range of 
possible reliability metrics.) As shown in Figure 4.1, travel 
times can be developed using a variety of methods, from 
direct measurement (top left) to purely synthetic means (top 
right). Although a wide variety of other performance metrics 
can be developed from travel times, is travel time the best 
primary metric to use? Travel times are not normalized and 
clearly will vary according to the length of the segment or trip 
being studied.

The original candidate reliability measures were the ones 
in use throughout the United States. However, during the 
study, research in Europe suggested other potentially useful 
measures. To examine how these concepts related to those 
specified in the work plan, an analysis using 2006 freeway 
data from the Atlanta NaviGAtor system was conducted. The 

first concept tested was the notion that in a skewed distribu-
tion, the median is a better descriptor of central tendency 
than the mean. Table 4.1 shows that for all the highway sec-
tions studied, the mean and the median are very close. This 
is true for relatively uncongested sections (Travel Time Index 
[TTI] <1.1) and congested sections (TTI >1.4).

Further confirmation that using the mean in the Buffer 
Index calculation provides the same information as using the 
width statistic is found in Figure 4.2. The strong positive rela-
tionship indicates that both measures are closely related and 
can be used interchangeably.

The team considered including the skew of the travel time 
distribution to be useful in the research. Use of this measure 
would largely be limited to researchers and technical person-
nel as its communication to laypersons is problematic, but 
having a way of characterizing the travel time distributions of 
different facilities and time periods would be valuable.

As a further empirical test of reliability performance mea-
sures, an additional analysis using data from the Seattle area 
was conducted. The data for this research were obtained from 
the loop sensors maintained by WSDOT along SR 520, an 
urban limited-access freeway running from Seattle to Red-
mond. The corridor was divided into westbound and east-
bound segments and segments west of I-405 (Bellevue to 
Seattle) and east of I-405 (Redmond to Bellevue). This par-
ticular data set was an excellent example for the study of reli-
ability data because each of the four segments has a very 
different level and pattern of congestion. SR 520 westbound 
from Bellevue to Seattle experiences the highest level of con-
gestion. Volumes are typically heavy throughout the day with 
congestion peaks in the a.m. and p.m. A 2-mile-long floating 
bridge with no shoulders on the western end of the corridor 
is highly susceptible to incident-induced congestion, adding 
to the existing volume saturation–related delays. On the east-
bound section of this roadway from Seattle to Bellevue, vol-
umes are similar to those found in the westbound direction, 
but because the bridge bottleneck is located at the beginning 

Empirical Measurement of Reliability
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Table 4.1. Travel Time Distribution Statistics: Atlanta Freeways, 2006 (4:00 to 7:00 p.m.)

Section Section Length (mi) TTI

Travel Time (min)

Mean Median 95th Percentile

I-75 northbound: south of Hudson Road to I-85 split 12.980 1.065 13.8 13.3 15.671

I-75 northbound: south of I-85 split to Brookwood Interchange 6.250 1.334 8.3 7.3 13.409

I-75 northbound: Brookwood Interchange to Wade Green Road 18.290 1.619 29.6 28.8 42.803

I-75 southbound: south of Hudson Road to I-85 split 12.610 1.560 19.7 18.5 30.418

I-75 southbound: south of I-85 split to Brookwood Interchange 6.570 1.665 10.9 10.7 14.089

I-75 southbound: north of Wade Green to Brookwood 16.760 1.056 17.7 17.1 20.140

I-85 northbound: Camp Creek Parkway to I-75 2.590 1.171 3.0 2.7 5.439

I-85 northbound: Brookwood Interchange to SR 316 17.430 1.570 27.4 27.0 36.305

I-85 southbound: I-75 to Camp Creek Parkway 2.670 1.055 2.8 2.7 3.291

I-85 southbound: SR 316 to Brookwood Interchange 18.690 1.248 23.3 23.0 28.537

I-285 eastbound: Cobb Parkway to Chamblee Tucker 13.400 1.673 22.4 21.9 32.365

I-285 westbound: Chamblee Tucker to Cobb Parkway 13.190 1.565 20.6 19.4 32.929

I-20 eastbound: I-285 Westside to I-75/I-85 3.680 1.036 3.8 3.7 4.496

I-20 westbound: I-75/I-85 to I-285 Westside 3.410 1.093 3.7 3.5 4.788

I-20 eastbound: I-75/I-85 to Wesley Chapel 8.590 1.345 11.6 11.3 16.234

I-20 westbound: Wesley Chapel to I-75–I-85 8.560 1.046 9.0 8.7 10.244

Figure 4.1. Travel time is the basis for defining mobility-based performance measures.
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of the study corridor, the average travel times tend to be 
higher than those measured in the westbound direction. The 
eastbound traffic is frequently congested throughout the day, 
with substantial peaks in both a.m. and p.m.

Table 4.2 shows the number of observations and minimum, 
maximum, mean, standard deviation, and skewness statistics 
for the travel time in the p.m. peak period (3:00 to 7:00 p.m.) for 
each section of SR 520. Using skewness and the standard error 
of skewness, a z-value can be calculated. If skewness divided by 
the standard error of skewness is greater than 1.96, then one can 
be 95% confident that the distribution is skewed. (The standard 
error of skewness is calculated as the square root of 6/n, where 
“n” is the number of observations.) The standard error of skew-
ness values for the four sections in Table 4.2 are all roughly 0.02, 
since the sample sizes (number of observations) are the same. 
The skewness ranges from 10 to 100 times the standard error of 
skewness, indicating that the distributions are skewed.

Although a few extreme values affected the mean and the 
maximum, a few extreme values did not affect the 80th, 90th, 
and 95th percentile calculations, and therefore the difference 
between the mean and these percentiles was not as robust a 
measure as it would have been using the median. Because travel 
time data are by nature skewed, a travel time reliability–based 

comparison to the median would be more appropriate (e.g., 
the Buffer Index).

A test was performed in which all travel times affected by 
incidents and accidents were removed from the SR 520 data 
set for the western portion of the corridor from Bellevue to 
Seattle. This simulated the benefits that could be gained if 
vehicle improvements eliminated all vehicle accidents and 
breakdowns. Table 4.3 shows the statistics that reflect these 
two conditions.

While improvements are seen in all direct measures of travel 
time, both indices report a worsening of reliability. This out-
come is caused by the central condition having improved more 
than the extreme portions of the distribution. Thus the corri-
dor is less reliable. But from both a motorist’s standpoint and a 
highway agency’s standpoint, this outcome would be a signifi-
cant improvement in performance. Because both the central 
tendency and the actual extreme travel times improved, the 
traveler would experience an improvement in the corridor 
operation. Consequently, the team was unconvinced that either 
of these indices effectively reported the changes illustrated by 
this experiment.

Essentially the issue with choosing one number to explain 
a reliability distribution is that one number cannot explain the 

Table 4.2. Travel Time Statistics for P.M. Peak Period on SR 520

SR 520 Section Number Minimum Maximum Mean
Standard 
Deviation Skewness

Westbound Bellevue to Seattle 12,350 409 2,975 1,088.8 441.3 0.27

Eastbound Seattle to Bellevue 12,095 409 2,861 598.8 203.8 2.26

Westbound Redmond to Bellevue 12,385 330 2,365 492.4 364.6 2.58

Eastbound Bellevue to Redmond 12,371 330 3,354 604.9 264.2 3.13

Figure 4.2. Buffer Index versus width statistic on Atlanta freeways, 2006 
(4:00 to 7:00 p.m.).
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entire distribution. Rather than relying on only one percentile 
calculation or one index, several must be documented to effec-
tively track travel times. By noting the 80th, 90th, and 95th per-
centile values in comparison to the median (50th percentile) 
value, the range in travel time changes can be demonstrated 
from year to year. Each statistic can illustrate the change in a 
particular problem.

An example of the use of these statistics is given in Figure 4.3, 
which shows the westbound segment of SR 520 from Bellevue 
to Seattle. The gray lines are weekday travel times in the p.m. 
peak period from 3:00 to 8:00 p.m. The black lines are the 
weekday travel times during the same time period, except that 
travel times during incident or accident conditions have been 
removed; that is, the black lines represent the travel time 

percentiles if no incidents or accidents occurred. This case is an 
excellent example of the shifting of the travel time percentile 
lines. The median travel time improves from 1,500 to 1,300 sec-
onds at 5:30 p.m., the peak 5-minute time period. The shift in 
the 95th percentile is more pronounced at the onset of the peak 
period congestion from 3:00 to 4:00 p.m. The 50th, 80th, and 
95th percentile travel times all have noticeable improvement 
over the before condition. At the same time, on this badly 
oversaturated roadway, it is quickly apparent that although 
incidents and accidents make travel both worse and more 
unreliable, they are by no means the primary cause of either 
congestion, nor are they the only cause of unreliable travel.

It was concluded from this analysis that a few additions to 
the list of reliability metrics originally developed in Phase 1 

Table 4.3. Effect on Travel Times of Removing All Incidents 
and Accidents on SR 520, Bellevue to Seattle, P.M. Peak 
Period (3:00 to 7:00 p.m.)

Travel Times for  
Weekdays (s)

Travel Times for  
Days with No  

Incident Effects (s) Difference (s)

Mean 1,089 1,026 63

Median 1,063 1,006 57

80th Percentile 1,560 1,467 93

90th Percentile 1,687 1,651 36

95th Percentile 1,780 1,748 32

Misery Index 0.59 0.66 -0.07

Unreliability skew 1.08 1.2 -0.12

Figure 4.3. Travel time distributions on SR 520.
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were in order. Based on the skewness of the travel time distri-
butions, the median is a better central tendency statistic to 
use as a base value for travel time for indices. Therefore, the 
following adjustments were made:

•	 The two Buffer Indices were defined using both the mean 
and median as the reference value (note that the skew sta-
tistic already uses the median as its reference value);

•	 The 80th percentile travel time was added as a reliability 
metric;

•	 The skew statistic was added; and
•	 Some on-time measures were defined by using the median 

rather than the mean.

The final set of reliability metrics appears in Table 4.4. Note 
that TTI rather than pure travel time is used as the primary 
measurement for the percentiles of the distribution. As a 
unitless index, TTI is normalized for distance so that sections 
of different lengths can be compared. An alternative would 
have been to use the travel rate (minutes per mile, the inverse 
of space mean speed). All the reliability measures used in this 
report were derived from the distribution of TTIs rather than 
raw travel time.

travel time Distributions and 
reliability performance Metrics

The Introduction presents several perspectives for defining 
reliability. For the purpose of the L03 research, reliability was 
defined as the variability of travel times on an extended high-
way section over the course of 6 months to 1 year for different 
time slices of the day. This definition allowed direct measure-
ment with the available data and is consistent with the current 

state of the practice in performance measurement and eco-
nomic analyses.

A simple way to visualize reliability is to develop travel 
time distributions and superimpose reliability metrics on 
them. Figures 4.4 through 4.8 show an example of this pro-
cess for a 5.19-mile section in Atlanta during 2007 for mul-
tiple time slices: peak hour, peak period, midday, weekday (all 
hours), and weekend and holiday (all hours). Throughout the 
analysis, holidays were defined as the major federal holidays: 
New Year’s Day, Martin Luther King Day, President’s Day, 
Independence Day, Labor Day, Veteran’s Day, Thanksgiving, 
and Christmas Day. This is a highly congested section in peak 
periods, with an average TTI over 2.0, which means that trips 
take over twice as long as they would under free-flow condi-
tions. During the course of the research the team found that 
several observations on these plots can be generalized to other 
locations:

•	 The shape of the travel time distribution for congested 
peak times (nonholiday weekdays) is much broader than the 
sharp spike evident in uncongested conditions. The breadth 
of this broad shoulder of travel times decreases as con-
gestion levels decrease;

•	 Similarly, the tails of the distributions (to the right) appear 
more exaggerated for the uncongested time slices. How-
ever, note that the highest travel times occur during the 
peaks; and

•	 Despite the fact that peaks have been defined, there are still 
a number of trips that occur at close to free flow; there are 
more of these trips in the peak period than in the peak 
hour. This is probably because peak times actually shift 
slightly from day to day, as traffic demand can be shifted by 
events. Also, there are probably some days when overall 
demand is lower than other days.

Table 4.4. Final Set of Reliability Metrics Used in the Research

Reliability Performance Metric Definition Units

Buffer Index Difference between 95th percentile TTI and average TTI,  
normalized by average TTI.

Difference between 95th percentile TTI and median TTI,  
normalized by median TTI.

%

Failure and on-time measures Percentage of trips with travel times <1.1 median travel time 
(MTT) and <1.25 MTT.

Percentage of trips with space mean speed less than 50, 45, 
and 30 mph.

%

Planning Time Index 95th percentile TTI. None

80th percentile TTI Self-explanatory. None

Skew statistic (90th percentile TTI - median)/(median - 10th percentile TTI). None

Misery Index (modified) Average of highest 5% of travel times divided by free-flow 
travel time.

None
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Figure 4.4. Peak hour travel time distribution, Atlanta, I-75 northbound, 
I-285 to SR 120 (2007).

Figure 4.5. Peak period travel time distribution, Atlanta, I-75 northbound, 
I-285 to SR 120 (2007).

Figure 4.6. Midday travel time distribution, Atlanta, I-75 northbound,  
I-285 to SR 120 (2007).
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Data requirements for 
establishing reliability

To allow sufficient time for the occurrence of the myriad of 
events (e.g., incidents, bad weather) that can affect travel times, 
reliability requires a fairly long history of travel times. The 
question is, how much data are needed to make a reasonable 
estimate of a section’s reliability? The study team worked with 
the assumption that a year’s worth of data was desirable.

The research team conducted tests with urban freeway 
(detector-based) data from Atlanta and the San Francisco Bay 
Area. These tests were conducted by selecting multiple samples 
from several time durations, computing the TTI and Buffer 

Index for the samples, comparing them with the annual value, 
and noting the error. Table 4.5 shows the results of using 2007 
freeway data from Atlanta for the peak period on each sec-
tion. It is apparent from these results that a month’s worth of 
data provides reasonable estimates of average travel time, but 
it is insufficient to establish reliability.

Longer time periods also were tested; the results for the Buf-
fer Index appear in Figure 4.9. For this analysis, all possible 
month combinations for each sampling rate were tested. With 
6 months of data, the error rate for the Buffer Index was about 
the same as it was with 1 month of data for estimating TTI.

Incidents are relatively infrequent in terms of the num-
ber of minutes each year that they are present on a facility. 

Figure 4.7. Weekday travel time distribution, Atlanta, I-75 northbound, 
I-285 to SR 120 (2007).

Figure 4.8. Weekend and holiday travel time distribution, Atlanta,  
I-75 northbound, I-285 to SR 120 (2007).
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Table 4.6 shows annual incident minutes on an 11-mile 
stretch of U.S. 101 southbound in California. All incidents of 
any type were present only 17% of the time on U.S. 101 
southbound. One must, therefore, simulate a relatively long 
time to hope to be able to capture a single incident.

The exploratory research found that the travel time vari-
ance and the mean travel time for any facility are highly cor-
related. Figure 4.10 shows how the standard deviation of the 
travel time rate for U.S. 101 southbound varies according to 
the mean travel time rate. As the Atlanta data above also show, 

many fewer samples are required to estimate the mean travel 
time than to estimate its variance (or standard deviation).

The research team concluded from these analyses that a 
minimum of 6 months of data is required to estimate travel 
time reliability. In areas where snow and ice are frequent 
events, this requirement would be expected to increase to a 
full year. It may be possible in winter weather–affected loca-
tions to use 6 months of data if the data represent every other 
month. However, the team proceeded with the idea that a 
year’s worth of data would provide more sound results and 
strove to achieve the 1-year minimum.

trends in reliability

An examination of congestion and reliability trends from 
2006 to 2008 on the 10 Atlanta study sections was under-
taken. Anecdotal information suggested that congestion had 
decreased in 2008 after a midyear spike in gas prices and the 
economic downturn. Table 4.7 presents the results for the peak 
period. Note that the peak period was fixed and was deter-
mined using the procedure given in this chapter using 2006 
data. On all 10 sections, TTI increased between 2006 and 
2007 and decreased between 2007 and 2008. In nine cases, the 
2008 TTIs were below those of 2006. Note that eight of the 
10 sections had ramp meters installed in 2008.

On seven of the 10 study sections, the Buffer Index actually 
increased in 2008 over 2007 levels, yet overall congestion was 
better (i.e., TTI went down). The two components of the Buf-
fer Index (95th percentile and mean travel time) decreased in 
all cases. However, when the Buffer Index increased, it can be 
seen that the drop in the 95th percentile was proportionately 
lower than the drop in the mean travel time, leading to a higher 
index value. The 80th percentile travel time decreased in 2008 
on all sections, and the skew statistic exhibited a similar pattern 
as the Buffer Index. The Planning Time Index (not shown in 

Table 4.5. Error Rates for Using 1 Month of Data to 
Estimate Annual Average Travel Time and Reliability 
During Peak Periods in Atlanta (2006)

Section

Mean Absolute 
Error

Travel 
Time

Buffer 
Index

I-285 eastbound from GA 400 to I-75 8.1% 25.4%

I-285 eastbound from GA 400 to I-85 7.0% 24.9%

I-285 westbound from GA 400 to I-75 5.8% 26.9%

I-285 westbound from GA 400 to I-85 5.1% 26.4%

I-75 northbound from I-20 to Brookwood 4.0% 46.2%

I-75 northbound from I-285 to Roswell Road 7.1% 26.1%

I-75 northbound from Roswell Road to Barrett 
Parkway

4.3% 42.1%

I-75 southbound from I-20 to Brookwood 6.0% 33.5%

I-75 southbound from I-285 to Roswell Road 5.2% 25.0%

I-75 southbound from Roswell Road to Barrett 
Parkway

8.2% 19.3%

Overall 6.1% 23.1%

Figure 4.9. Error rates for samples to estimate TTI and Buffer Index in 
study sections during peak periods in Atlanta (2008).
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Table 4.7) exhibited the same characteristics as the 95th per-
centile since its base is free-flow speed, which does not change.

Figures 4.11 and 4.12 show the travel time distributions 
for two sections where the Buffer Index and skew statistic 
increased:

•	 The I-75 section had ramp meters turned on in mid-October 
2008 and saw a decrease in demand of 5.5% from 2007 to 
2008; and

•	 The I-285 section had ramp meters turned on by July 1, 
2008, and saw a decrease in demand of 1.8%.

Note that for the same fixed peak period, there was more free-
flow travel in 2008 on both sections. On the I-75 section the 
increase in free-flow travel was due primarily to the decrease 
in demand, but on the I-85 section the improved flow was 
probably due to a combination of reduced demand and ramp 
meters. Both the Buffer Index and the skew statistic indicate 
there was more spread in the distribution, but the worst travel 
times (the 80th and 95th percentiles) were decreased.

What can be concluded from these seemingly conflicting 
results on the seven segments about reliability trends? In other 
words, does reliability get better or worse at these locations? 

Table 4.6. Annual Incident Minutes on U.S. 101 Southbound in Marin County

Incident Type
Logged 

Incidents
Estimated 

Logged (%)

Estimated 
Number of 
Incidents

Duration (min)
Total 

Incident 
Minutes

Annual 
ProbabilityMean

Standard 
Deviation

Accident, injury  19 100%  19 42.8 40.3 813 0.87%

Accident, noninjury  84  99%  85 22.6 22.2 1,915 2.05%

Accident, other  76  99%  77 19.7 17.0 1,513 1.62%

Breakdown  88  60% 147 17.9 19.8 2,620 2.80%

Other  15  60%  25 32.5 73.4 812 0.87%

Traffic hazard 274  60% 457 19.0 14.9 8,662 9.25%

Subtotal incidents 556  69% 809 20.2 22.2 16,335 17.45%

Nonincidents NA NA NA NA NA 77,265 82.55%

Total year NA NA NA NA NA 93,600 100.00%

Note: Estimated Logged accounts for the typical underreporting of less severe incidents. NA = not applicable.

Figure 4.10. Standard deviation of travel time rates for U.S. 101  
Southbound.
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Year

2006 2007 2008

Section I-75 NB from I-285 to Roswell Roada

TTI 2.046 2.026 1.665

Average TTI 11.271 11.162 9.177

95th Percentile TTI 16.934 17.507 14.800

Buffer Index 0.502 0.568 0.613

80th Percentile TTI 13.974 14.191 11.458

Skew statistic 0.942 1.087 1.514

Daily VMTb 691,399 689,628 N/A

Section I-75 SB from I-285 to Roswell Roada

TTI 1.312 1.369 1.293

Average TTI 7.665 7.994 7.552

95th Percentile TTI 10.139 10.517 9.868

Buffer Index 0.323 0.316 0.307

80th Percentile TTI 8.353 8.719 8.306

Skew statistic 1.524 1.515 1.461

Daily VMT 691,399 689,628 N/A

Section I-75 NB from I-20 to Brookwood

TTI 1.350 1.542 1.339

Average TTI 6.710 7.664 6.656

95th Percentile TTI 8.120 10.755 8.031

Buffer Index 0.210 0.403 0.207

80th Percentile TTI 7.097 8.112 7.015

Skew statistic 1.283 1.923 0.771

Daily VMT 616,038 620,959 595,034

Section I-75 SB from I-20 to Brookwood

TTI 2.052 2.171 2.067

Average TTI 9.336 9.877 9.404

95th Percentile TTI 13.110 14.270 12.389

Buffer Index 0.404 0.445 0.317

80th Percentile TTI 10.805 11.416 11.042

Skew statistic 1.324 1.120 0.956

Daily VMT 616,038 620,959 595,034

Section I-285 EB from GA 400 to I-75c

TTI 1.359 1.481 1.380

Average TTI 9.322 10.162 9.469

95th Percentile TTI 12.548 13.150 12.493

Buffer Index 0.346 0.294 0.319

80th Percentile TTI 10.505 11.382 10.849

Skew statistic 1.148 0.996 1.070

Daily VMT 584,487 588,442 572,211

Table 4.7. Trends in Reliability, Atlanta Freeways (2006–2008)

Year

2006 2007 2008

Section I-285 WB from GA 400 to I-75c

TTI 1.826 1.893 1.672

Average TTI 12.564 13.026 11.504

95th Percentile TTI 19.053 19.754 19.543

Buffer Index 0.517 0.516 0.699

80th Percentile TTI 15.632 16.140 14.699

Skew statistic 1.202 1.043 1.779

Daily VMT 584,487 588,442 572,211

Section I-285 EB from GA 400 to I-85c

TTI 2.247 2.314 1.797

Average TTI 14.495 14.926 11.593

95th Percentile TTI 23.353 24.724 21.084

Buffer Index 0.611 0.656 0.819

80th Percentile TTI 19.336 19.945 15.256

Skew statistic 1.285 1.248 2.347

Daily VMT 588,597 580,629 567,497

Section I-285 WB from GA 400 to I-85c

TTI 1.621 1.681 1.511

Average TTI 10.424 10.809 9.713

95th Percentile TTI 13.740 13.707 12.612

Buffer Index 0.318 0.268 0.299

80th Percentile TTI 11.622 11.957 11.082

Skew statistic 0.790 0.763 0.656

Daily VMT 588,597 580,629 567,497

Section I-75 NB from Roswell Road to Barrett Parkwaya

TTI 1.579 1.652 1.514

Average TTI 8.762 9.170 8.405

95th Percentile TTI 11.827 12.823 12.357

Buffer Index 0.350 0.398 0.470

80th Percentile TTI 10.206 10.560 9.656

Skew statistic 1.513 1.348 1.586

Daily VMT 669,568 675,274 N/A

Section I-75 SB from Roswell Road to Barrett Parkwaya

TTI 1.809 1.872 1.614

Average TTI 9.785 10.129 8.730

95th Percentile TTI 13.835 14.301 12.791

Buffer Index 0.414 0.412 0.465

80th Percentile TTI 11.208 11.575 10.529

Skew statistic 0.849 0.920 0.945

Daily VMT 669,568 675,274 N/A

(continued on next page)
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Figure 4.12. I-75 northbound, I-285 to Roswell Road, peak period.

Table 4.7. Trends in Reliability, Atlanta Freeways (2006–2008) (continued)

Year

2006 2007 2008

All Sections

TTI 1.720 1.800 1.585

Average travel time 10.033 10.492 9.220

95th Percentile TTI 14.266 15.151 13.597

Buffer Index 0.399 0.428 0.451

Year

2006 2007 2008

80th Percentile TTI 11.874 12.400 10.989

Skew statistic 1.186 1.196 1.308

Daily VMT 3,150,088 3,154,932 2,878,074

Daily VMT without I-75 
(I-285 to Barrett Pkwy)

1,789,122 1,790,030 1,734,742

a Ramp meters were turned on mid-October 2008.
b VMT (vehicle miles traveled) was calculated for both directions combined, then divided by two for each directional section.
c Ramp meters were turned on July 1, 2008.
Note: NB = northbound; SB = southbound; EB = eastbound; WB = westbound. 

Figure 4.11. I-285 eastbound, GA 400 to I-85, peak period.



61

Both the Buffer Index and the skew statistic indicate there was 
more spread in the distribution, but the worst travel times 
(the 80th and 95th percentiles) were decreased. That the drop 
in the 95th percentile was not as great as the drop in the mean 
indicates that although base (typical) conditions improved, 
the variation around the new base was higher (as indicated 
by the Buffer Index and skew statistic). So, for a traveler in 
2008, the worst days are better than they were in 2007, but 
compared with a typical trip, the worst days are proportion-
ately worse. Whether reliability got better or worse depends 
on whether the traveler perceives the extra time in absolute or 
relative terms. In absolute terms, the buffer time (95th per-
centile minus the mean) improved in 2008.

Assume for the moment that the decreases in the metrics 
are due solely to the decreased demand in 2008, which would 
have reduced the base (recurring) congestion. Also assume 
that the worst travel times are influenced by roadway events 
such as incidents. The decreases in the 80th and 95th percen-
tiles in 2008 are another indication of the interaction between 
base congestion and events; that is, assuming event character-
istics are equivalent, less base congestion leads to lower event-
related congestion. However, the lessened impact is somewhat 
marginal: the drop in the worst travel times was not as big as 
for base congestion.

There are two implications of these results for future 
research and existing practice. First, the Buffer Index may not 
be the most appropriate metric for tracking trends. In the 
Atlanta analysis, it can be seen that the mean travel times had 
a proportionately higher decrease than the 95th percentile. 
Presumably, this trend occurred because the major factor was 
decreased demand, which would tend to decrease all travel 
times, and not primarily affect the extremes as some opera-
tional treatments do. So, because of the way the Buffer Index 
is normalized by the mean, it can produce a counterintui-
tive result; that is, it can produce worsened reliability and 
decreased average congestion. Although this nuance means 
that the Buffer Index might not be the best metric for mea-
suring trends, it still gives useful information about condi-
tions. In the new reality of 2008, the size of the buffer did 
indeed increase, even if the increase was primarily the result 
of a large decrease in the mean travel time.

The second implication is that demand can have a signifi-
cant effect on both average congestion level and reliability. As 
shown in Figure 2.2 (Chapter 2), conceptually, demand and 
base capacity interact with events to produce total congestion 
patterns. Overall, analysis shows just how important volume 
is to congestion and reliability when capacity is improved.

Defining peak hour  
and peak period

The length of peak times for conducting congestion and reli-
ability analyses can be defined by either (a) determining fixed 
times for all locations, based on subjective local knowledge; 

or (b) determining the start and end times empirically. The 
research team decided on the latter method and defined peak 
hour and peak period as follows:

•	 Peak hour is the continuous 60-minute period during 
which the space mean speed is less than 45 mph. As this 
period can be much longer than an hour, the selection of 
the actual peak hour within this period is based on exam-
ining alternative 60-minute periods based on three criteria:
–– Low space mean speed,
–– High vehicle hours of travel, and
–– High vehicle miles of travel.

The analyst must decide which 60-minute period is the actual 
peak hour based on comparing this information with local 
knowledge. Note that for routinely congested sections, the 
highest VMT will occur either right before the actual peak 
(high flow right before breakdown conditions) or after the 
peak (high flow during queue release); and

•	 Peak period is a continuous time period of at least 75 min-
utes during which the space mean speed is less than 45 mph.

The peaks for the urban freeway study sections are shown in 
Table 4.8.

estimating Demand in 
Oversaturated Conditions  
on Freeways

When traffic flow breaks down on freeways, the observed vol-
ume of vehicles moving past a point drops due to slower 
speeds and the onset of queuing. Roadway detectors count 
only volume (the number of vehicles that pass a given point), 
not demand (the number of vehicles that want to pass the 
point). The simultaneous volume–speed plots in Figures 4.13 
and 4.14 are typical of congested freeways everywhere. This 
loss in capacity after flow breakdown is often referred to as 
lost productivity or lost efficiency because it means that 
under such conditions, throughput is actually lost.

The actual demand that wants to pass a given point is stored 
upstream in the queue. The applications that are likely to use 
the L03 results (e.g., the Highway Capacity Manual [HCM], 
travel forecasting and simulation models) need to know that 
demand in order to predict traffic conditions. To address this 
need, the research team developed a procedure for allocating 
queued demand to the time period when that demand is try-
ing to use a section of highway. The steps are as follows:

1. A congestion threshold speed of 35 to 45 mph is set by the 
analyst (40 mph is used in the examples presented here). 
For each 5-minute observation
a.  If the mean observed speed is ≥40 mph, then the ob- 

served volume is equal to the demand.
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Table 4.8. Peak Hour and Peak Period Definitions for L03 Study Sections

Peak 
Hour Peak Period

City Section Start Start End Length (h)

Houston  1 6:20 6:00 8:15 2:15

 2 6:35 6:15 8:40 2:25

 3 7:35 6:40 9:20 2:40

 4 16:40 15:15 18:55 3:40

 5 16:50 16:20 19:10 2:50

 6 16:50 16:20 19:10 2:50

 7 6:05 6:15 7:50 1:35

 8 6:45 6:15 9:10 2:55

 9 6:45 6:15 9:10 2:55

10 7:00 7:20 8:55 1:35

11 16:35 16:15 18:30 2:15

12 16:50 16:40 18:30 1:50

13 16:55 16:45 19:00 2:15

Minneapolis– 
St. Paul

14 7:00 6:25 8:55 2:30

15 15:19 15:10 17:35 2:25

16 16:35 15:10 18:05 2:55

17 16:20 16:20 18:10 1:50

18 16:05 15:05 18:25 3:20

19 16:15 16:15 18:20 2:05

20 7:55 7:55 9:25 1:30

21 16:15 16:15 17:55 1:40

22 16:10 14:45 17:55 3:10

23 7:00 7:00 8:35 1:35

24 16:20 16:10 18:20 2:10

25 6:55 6:55 8:55 2:00

26 16:00 15:25 17:55 2:30

27 16:15 16:15 18:05 1:50

28 7:05 7:05 8:55 1:50

29 16:20 16:20 18:15 1:55

Peak 
Hour Peak Period

City Section Start Start End Length (h)

Los Angeles 30 7:10 6:45 9:30 2:45

31 7:15 6:35 9:00 2:25

32 16:45 16:50 19:00 2:10

San Francisco 
Bay Area

35 16:25 15:45 18:50 3:05

San Diego 37 15:45 15:25 18:40 3:15

38 16:55 16:55 18:30 1:35

39 6:45 6:45 8:20 1:35

40 16:40 15:00 19:05 4:05

41 16:25 15:45 18:25 2:40

42 6:30 6:25 8:55 2:30

Atlanta 43 17:00 16:30 18:30 2:00

44 7:45 7:15 8:30 1:15

45 17:15 7:15 9:00 1:45

46 17:00 15:30 18:30 3:00

47 7:15 7:15 8:45 1:30

48 17:15 16:30 18:30 2:00

49 17:00 16:00 18:30 2:30

50 7:45 7:15 9:00 1:45

51 17:00 16:30 18:30 2:00

52 7:30 7:15 9:00 1:45

Jacksonville 74 7:30 7:15 8:40 1:25

75 17:00 16:45 18:10 1:25

76 7:25 7:10 8:30 1:20

77 17:00 16:45 18:10 1:25

78 17:00 16:45 18:10 1:25

79 7:20 7:10 8:35 1:25

80 17:00 16:45 18:10 1:25

81 16:45 16:35 17:55 1:20

Note: Sections are keyed to Table 3.2.

b.  If the mean speed is <40 mph, then the observed vol-
ume is not equal to demand, and a demand estimate is 
required.

2. The congested period is then the set of consecutive 5-min-
ute observations with speeds <40 mph. If a single 5-minute 
period is uncongested, but it is surrounded by congested 
5-minute observations, then this single 5-minute observa-
tion is considered to be congested, as well.

3. The congested period is split into two halves. The queue is 
assumed to be building during the first half of the con-
gested period and dissipating during the second half.

4. The cumulative demand is computed for about half an hour 
before the onset of congestion and for half an hour after the 
termination of congestion.
a.  During the first half of the congested period, the demand 

rate (vehicles per 5-minute period) is assumed to be equal 
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congested period should not be sharply higher than the 
estimated demand rate for the second half of the con-
gested period. It is sometimes necessary to smooth out 
the transition by assuming the congested period extends 
an additional 5-minute period.

Figure 4.15 illustrates the application of this approach to a 
congested period for U.S. 101 in Marin County, California.

reliability Breakpoints  
on Freeways

After reviewing the urban freeway data, it became apparent to 
the research team that the data could be used in creative ways 
to answer basic questions about reliability and to provide 
insight into the complex statistical modeling ahead. One of 
these questions was, at what volume (demand) levels does 
reliability radically change? The issue this question addresses 
is similar to establishing basic capacity values for when flow 
breakdown occurs, except that here the concern is with the 
volume level that causes reliability to rapidly deteriorate. A 

to the average of the demand rates observed in the last 
two 5-minute periods just before the onset of congestion. 
This demand rate is assumed to be fixed for the first half 
of the congested period, and it is used to compute the 
cumulative demand for this half of the congested period.

b.  Once the cumulative demand at the midpoint of the con-
gested period is computed, then the analyst calculates a 
second demand rate to be used during the second half of 
the congested period. This second demand rate is set so 
that the cumulative demand will equal the cumulative 
observed volume by the end of the congested period.

c.  The second-half demand rate then is added to the 
cumulative demand at the midpoint of the congested 
period until the end of the congested period is reached, 
at which point the estimated demand should be equal 
to the observed cumulative volume.

d.  The two 5-minute periods after the termination of the 
congested period are checked to see if the estimated 
demand curve smoothly fits to the observed cumula-
tive volume curve. The observed 5-minute volume for 
the first 5-minute period following the end of the 

Figure 4.13. Volume drop after onset of congestion: Example 1.

Figure 4.14. Volume drop after onset of congestion: Example 2.
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of congestion on the freeway, is quite a bit lower than the 
theoretical 2,000 vphpl capacity of the freeway (after convert-
ing from passenger car capacity to mixed-flow capacity). But 
note that the volumes in Figure 4.16 are the average across the 
peak period. Peak 15-minute demands within the peak period 
may be significantly higher than the average volume across 
the entire peak period.

Figure 4.17 shows similar computations and results for the 
five detectors in the westbound direction of I-580. Both the 
mean and the standard deviation in the travel time rate for 
each peak period tended to rise almost vertically in the range 
of 1,600 to 1,700 vphpl averaged across the peak period. The 
breakpoint volumes for freeway reliability varied by detector 
location, even for the same facility.

Figures 4.18 and 4.19 show the volume–reliability relation-
ships for one year’s worth of peak and off-peak time periods for 
a single detector in each direction on I-580. The breakpoint vol-
ume for this detector was in the 1,200 to 1,300 vphpl range for 
the eastbound direction and 1,100 to 1,200 vphpl westbound. 
For the eastbound direction, the relationship appeared to be 
precisely vertical once the breakpoint volume was reached for 
the peak period. The westbound direction appeared to have a 
few nonrecurrent incidents that caused some reliability prob-
lems before the breakpoint volume was reached.

Figure 4.20, computed from a year’s worth of loop detector 
data for U.S. 101 southbound, shows that a similar flat rela-
tionship between mean volume and standard deviation of 
travel time existed on this freeway until the breakpoint vol-
ume of between 1,050 and 1,150 vphpl was reached. After this 
point, both the mean and the standard deviation of the travel 
time rate increased steeply, but not precisely vertically.

The analysis above shows that travel time reliability on a 
freeway is not a function of counted traffic volumes until a 
breakpoint volume is reached. At that breakpoint, travel time 

complete description of this effort is provided in the Phase 2 
report; a summary is provided below.

Various measures of travel time reliability were investigated, 
and the standard deviation of the measured travel time rate per 
mile was selected as an appropriate indicator of travel time reli-
ability for the purpose of establishing reliability breakpoints. 
The team chose the standard deviation in order to examine 
both sides of the mean volume that lead to breakdown.

Two methods for measuring the standard deviation of the 
travel time rate were evaluated. Loop detectors provide excellent 
temporal coverage for limited geographic locations, and vehicle 
probes provide excellent geographic coverage of a facility for 
limited time periods. A method was developed for calibrating 
loop detector estimates of travel time reliability to probe vehicle 
measurements of travel time reliability so that the annual travel 
time reliability for the freeway could be estimated.

A year’s worth of loop detector station data for four sta-
tions (located on two freeways in the San Francisco Bay Area) 
was evaluated to determine how traffic volumes and inci-
dents affected the observed travel time reliability on a freeway 
for the morning peak, afternoon peak, and off-peak periods 
over the course of a year.

Three weeks of travel time rate data were evaluated from 
13 loop detector stations on eastbound I-580. The mean and 
standard deviation of the travel time rate (minutes per mile) 
were computed for each of three time periods (a.m. peak, 
p.m. peak, off-peak) for each day of the week.

As shown in Figure 4.16, both the mean travel time rate 
and the standard deviation were relatively constant until the 
counted mean volume (across all detectors) for a peak period 
reached between 1,250 and 1,350 vehicles per hour per lane 
(vphpl). Somewhere in this range, the mean and standard 
deviation of the travel time rate starts to soar almost verti-
cally. This breaking point, when there are strong indications 

Figure 4.15. Example of demand estimation during oversaturated  
conditions. 
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Figure 4.16. Volume and reliability on I-580 eastbound at multiple 
detectors.

Figure 4.17. Volume and reliability on I-580 westbound at multiple 
detectors.
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same freeway facility. In other words, the breakpoint volume 
does not appear to be a fixed ratio of the theoretical capacity 
of the subject section of the facility.

The breakpoint in reliability generally occurs at a counted 
volume significantly lower than the theoretical capacity of the 
facility computed according to HCM procedures. This differ-
ence is partly because the breakpoint volume computed in 

reliability decreases abruptly. Once the breakpoint volume is 
exceeded, the decrease in travel time reliability (increase in 
variance) is extreme and so abrupt as to suggest it is asymp-
totic, with a nonsingular relationship to further volume 
increases.

The breakpoint volume varies significantly between facili-
ties and even (by location and direction of travel) within the 

Figure 4.18. Volume and reliability for a single detector on I-580 eastbound.

Figure 4.19. Volume and reliability for a single detector on I-580 westbound.
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An analysis was undertaken using data from the study sec-
tions in Seattle and Atlanta. For comparison with HCM ter-
minology, the team defined SSR in terms of vehicles per hour 
per lane:

•	 Data were available at 5-minute intervals in the two loca-
tions, so the first step was to aggregate the data to 15-min-
ute time intervals;

•	 For each 15-minute interval, an estimate of the corre-
sponding vehicles per hour per lane value was made by 
multiplying the 15-minute volume by four and applying a 
peak hour factor of 0.95 (a more sophisticated version of 
this method would compute the peak hour factor directly 
from the data); and

•	 The data for a detector location were scanned in time 
sequence, looking for points when flow broke down (i.e., 
when congestion or queuing began). Speeds less than 45 mph 
was used in this analysis. When two consecutive 15-minute 
periods registered speeds less than the threshold, the flow 
that occurred immediately before breakdown was assigned 
as the SSR.

The results are shown in Table 4.9. The results are in vehicles 
per hour per lane, which includes both automobiles and 
trucks. One way to look at the results is that they represent 
how capacity varies over the course of a year. The theoretical 
maximum capacity is probably somewhere close to the 99th 
percentile, allowing for the fact the actual maximum SSR may 
be an outlier.

this analysis is the average hourly volume counted over a peak 
period as opposed to the peak 15-minute demand used in the 
HCM capacity computation.

But this peaking effect does not entirely explain the differ-
ence in volumes. Part of the reason that the breakpoint vol-
ume is significantly lower than the theoretical capacity is that 
most sections of freeway are upstream of a bottleneck; thus, 
they are affected by downstream congestion backing up into 
the subject section long before the subject section’s HCM 
capacity is reached. Further, traffic-influencing events, espe-
cially incidents, effectively lower capacity when they occur, 
and over time they degrade reliability. This effect manifests 
itself in lower breakpoint volumes than for capacity (vol-
umes) related strictly to physical features. Finally, even for 
bottlenecks, the data suggest that the reliability breakpoint 
occurs long before the theoretical HCM capacity of the bot-
tleneck is reached.

Sustainable Service rates  
on Freeways

The concepts presented in the previous section can be 
extended to the idea of a sustained service rate (SSR), which is 
defined as the highest flow rate that can be sustained over a 
peak demand period with a low probability of breakdown. 
Brilon et al. proposed calling this broader capacity the whole-
year capacity of the facility (1). They focused on capacity just 
before breakdown, but the L03 team sought to quantify the 
probability of breakdown for different flow rates.

Figure 4.20. Volume and reliability on U.S. 101 southbound.
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Table 4.9. Distribution of SSR at Selected Locations (2007)

SSR (vphpl)

Route Station Mean Standard Deviation Maximum P99 P95 P90 P75 Median P10 P5 P1

Atlanta

I-75 northbound, Northside 10068 1,390 482 1,975 1,921 1,848 1,739 1,663 1,560 543 132 87

I-75 northbound, Northside 10070 1,922 288 2,407 2,386 2,236 2,125 2,050 1,967 1,750 1,430 621

I-75 northbound, Northside 750510 1,825 264 2,561 2,449 2,295 2,157 1,954 1,809 1,579 1,357 985

I-75 northbound, downtown connector 10026 1,631 357 2,169 2,169 2,082 2,036 1,900 1,654 1,205 929 316

I-75 northbound, downtown connector 10033 1,597 475 2,245 2,240 2,170 2,121 1,944 1,686 915 684 174

I-75 northbound, downtown connector 10037 1,581 366 2,553 2,199 2,016 1,936 1,806 1,682 1,152 840 287

I-75 northbound, downtown connector 10038 1,567 367 2,412 2,153 1,961 1,879 1,804 1,696 1,058 892 272

I-75 southbound, downtown connector 10130 1,270 306 2,110 1,776 1,658 1,599 1,493 1,295 902 575 291

I-75 southbound, downtown connector 10131 1,666 334 2,381 2,181 2,017 1,955 1,853 1,733 1,321 1,031 305

I-285 eastbound, North Arc 2850010 1,675 328 2,091 2,082 1,984 1,950 1,889 1,789 1,174 966 536

I-285 eastbound, North Arc 2850014 1,843 457 2,444 2,434 2,360 2,305 2,206 1,933 1,248 838 448

I-285 eastbound, North Arc 2850017 1,347 495 2,175 2,130 1,905 1,852 1,721 1,419 507 209 42

I-285 westbound, North Arc 2851033 1,634 307 2,230 2,126 1,917 1,849 1,797 1,728 1,306 911 527

Seattle

I-405 614DN 1,668 202 1,991 1,953 1,904 1,851 1,782 1,708 1,463 1,326 817

I-405 614DS 1,766 233 2,212 2,082 2,018 1,976 1,896 1,809 1,562 1,265 680

I-405 672DN 1,749 348 2,101 2,094 2,041 2,018 1,953 1,854 1,250 775 486

I-405 677DN 2,145 358 2,595 2,557 2,493 2,462 2,371 2,219 1,790 1,649 574

I-405 678DN 1,839 315 2,265 2,253 2,151 2,105 2,044 1,910 1,497 1,117 650

I-405 678DS 1,554 268 1,976 1,961 1,881 1,839 1,725 1,596 1,250 1,072 547

I-405 681RS 2,027 266 2,398 2,356 2,291 2,240 2,170 2,081 1,826 1,687 635

I-405 684DN 1,687 169 2,094 2,044 1,896 1,862 1,782 1,706 1,505 1,429 1,197

I-405 684DS 1,616 198 1,961 1,896 1,828 1,775 1,725 1,659 1,433 1,303 673

I-405 687RN 1,531 200 1,961 1,832 1,775 1,729 1,649 1,558 1,341 1,227 597

I-405 689RS 1,516 173 1,961 1,786 1,718 1,664 1,611 1,543 1,334 1,224 836

(continued on next page)
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I-405 693RN 1,599 167 1,961 1,851 1,794 1,767 1,702 1,630 1,417 1,349 992

I-405 694RN 1,574 178 1,961 1,889 1,820 1,763 1,687 1,596 1,368 1,296 961

I-405 696DN 1,927 48 1,961 1,961 1,961 1,961 1,961 1,927 1,892 1,892 1,892

I-405 696DS 1,615 221 1,961 1,953 1,866 1,835 1,769 1,674 1,349 1,186 920

I-405 698DN 1,586 151 1,961 1,961 1,805 1,771 1,693 1,571 1,414 1,349 1,091

I-405 698DS 1,607 185 1,999 1,938 1,866 1,813 1,721 1,630 1,383 1,292 1,087

I-405 704DN 2,032 276 2,398 2,383 2,337 2,272 2,204 2,105 1,714 1,497 992

I-405 706DN 1,615 541 1,961 1,961 1,961 1,961 1,961 1,892 992 992 992

I-405 708DN 1,811 175 2,124 2,105 2,010 1,995 1,919 1,843 1,630 1,467 1,201

I-405 708DS 1,788 222 2,117 2,094 2,048 2,003 1,934 1,839 1,528 1,440 954

I-405 709DN 1,930 222 2,322 2,208 2,158 2,139 2,060 1,961 1,740 1,550 866

I-405 709DS 1,933 293 2,379 2,364 2,223 2,174 2,117 1,995 1,588 1,307 783

I-405 710RN 1,778 229 2,132 2,086 1,999 1,961 1,904 1,824 1,592 1,292 714

I-405 710RS 1,926 239 2,318 2,288 2,177 2,124 2,056 1,951 1,786 1,600 673

I-405 711RN 1,776 179 2,060 1,999 1,959 1,934 1,877 1,820 1,617 1,427 946

I-405 711RS 1,877 427 2,504 2,402 2,310 2,250 2,174 2,048 1,205 920 688

I-405 716RN 1,891 256 2,291 2,227 2,139 2,098 2,041 1,930 1,661 1,349 817

I-405 716RS 1,979 291 2,409 2,345 2,280 2,200 2,128 2,025 1,775 1,455 509

I-405 717RN 1,830 246 2,284 2,124 2,067 2,041 1,972 1,877 1,581 1,330 692

I-405 717RS 1,940 215 2,333 2,307 2,236 2,147 2,060 1,959 1,754 1,653 1,068

I-405 720DS 1,498 272 1,961 1,923 1,820 1,775 1,695 1,554 1,180 984 540

I-405 722DS 1,512 209 1,961 1,892 1,744 1,710 1,642 1,539 1,296 1,060 817

I-405 726RS 1,629 334 2,333 2,291 2,128 2,029 1,900 1,585 1,345 1,007 638

I-405 730RN 1,572 313 2,044 2,044 1,961 1,923 1,843 1,568 1,243 882 585

I-405 730RS 1,641 218 1,961 1,961 1,892 1,851 1,744 1,661 1,490 1,258 570

I-405 731RN 1,564 309 1,972 1,972 1,921 1,870 1,816 1,695 1,094 1,056 654

I-405 731RS 1,459 220 1,961 1,961 1,824 1,718 1,623 1,482 1,224 1,140 654

(continued on next page)

Table 4.9. Distribution of SSR at Selected Locations (2007) (continued)

SSR (vphpl)

Route Station Mean Standard Deviation Maximum P99 P95 P90 P75 Median P10 P5 P1
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SSR (vphpl)

Route Station Mean Standard Deviation Maximum P99 P95 P90 P75 Median P10 P5 P1

Seattle

I-405 734DN 1,781 251 2,200 2,200 2,071 2,006 1,921 1,832 1,493 1,224 654

I-405 734DS 1,736 281 2,170 2,170 2,105 2,067 1,955 1,721 1,493 1,391 570

I-405 736DN 1,951 248 2,470 2,345 2,253 2,181 2,092 1,982 1,752 1,391 897

I-405 736DS 1,942 285 2,424 2,333 2,242 2,212 2,117 2,006 1,634 1,455 654

I-405 738DN 1,888 255 2,223 2,200 2,139 2,094 2,014 1,934 1,733 1,486 665

I-405 738DS 1,894 265 2,409 2,265 2,200 2,155 2,056 1,946 1,596 1,509 752

I-405 739DN 1,816 240 2,147 2,120 2,037 2,003 1,946 1,858 1,661 1,277 718

I-405 739DS 1,790 238 2,272 2,196 2,120 2,048 1,915 1,813 1,566 1,440 654

I-405 740RN 1,772 251 2,101 2,075 2,014 1,987 1,927 1,835 1,471 1,307 673

I-405 740RS 1,846 227 2,379 2,307 2,139 2,075 2,003 1,866 1,611 1,497 1,037

I-405 741RN 1,624 386 2,082 2,044 1,984 1,946 1,873 1,790 950 756 498

I-405 741RS 1,795 214 2,307 2,212 2,143 2,014 1,904 1,801 1,626 1,566 965

I-405 742DN 1,783 281 2,120 2,098 2,044 2,016 1,949 1,877 1,429 1,144 661

I-405 742DS 1,606 556 1,961 1,961 1,961 1,961 1,961 1,892 965 965 965

I-405 763DS 1,644 226 2,044 2,003 1,927 1,873 1,794 1,695 1,372 1,262 806

I-405 764DS 1,927 48 1,961 1,961 1,961 1,961 1,961 1,927 1,892 1,892 1,892

Note: P99, P95, P90, P75, P10, P5, and P1 = 99th, 95th, 90th, 75th, 10th, 5th, and 1st percentile, respectively.
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there is more excess capacity to buffer their effect, which is 
shown by the long tail to the left but no second peak for non-
recurring events.

Sites with a bimodal distribution may also be upstream of 
a bottleneck. Thus, flow will be observed to break down 
under low-volume conditions when actually it is queue spill-
back from the downstream bottleneck.

reliability of Signalized 
arterials

Data from the Orlando signalized arterial study sections were 
analyzed after undergoing the quality control checks dis-
cussed in Chapter 3. Figures 4.24 through 4.29 show the travel 
time distributions and selected performance measures. 
(These are the first continuous travel time distributions for 
signalized arterials that the team has seen.) As with urban 
freeway travel time distributions, the distribution is skewed 
to the right (toward higher travel times), but the extent of 
the skew does not appear to be as great, possibly because 

Further examination of the shape of the SSR distribu-
tions revealed some interesting results. Two distinct patterns 
emerged: a unimodal and a bimodal distribution. The uni-
modal SSR distribution is exhibited in Figures 4.21 and 4.22. 
As with travel times, the distribution is skewed, but to the left 
as opposed to the right.

A typical bimodal distribution is shown in Figure 4.23. A 
crude analysis of congestion levels indicates that the uni-
modal distribution is most common on slightly to moder-
ately congested sites, but the bimodal distribution is more 
characteristic of highly congested locations.

A possible explanation for the occurrence of two distribu-
tion types is that the bimodal distribution shows both a 
recurring (close to 2,000 vphpl) and a nonrecurring (around 
1,000 vphpl) SSR. Locations with high base congestion are 
more vulnerable to traffic-influencing events such as incidents, 
and this sensitivity may be reflected in the SSRs. These loca-
tions also may be more prone to lane-blocking incidents 
because of higher incident rates or lack of shoulders, or both. 
Incidents in less congested locations have less effect because 

Figure 4.21. Distribution of SSR on I-405 in Seattle at Station 651DN.

Figure 4.22. Distribution of SSR on I-405 in Seattle at Station 708DS.
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Figure 4.23. Distribution of SSR on I-405 in Seattle at Station 612DN.

Figure 4.24. Orlando, Section 3, a.m. peak.

Figure 4.25. Orlando, Section 3, p.m. peak.
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Figure 4.26. Orlando, Section 4, a.m. peak.

Figure 4.27. Orlando, Section 4, p.m. peak.

Figure 4.28. Orlando, Section 5, a.m. peak.
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reliability of rural  
Freeway trips

Figures 4.30 through 4.33 show the reliability of trips on the 
two study sections for 2006 and 2007 combined. The plots 
show the distribution of the actual travel times. However, in 
calculating TTI and associated statistics, travel times faster 
than the free-flow travel time were set to the free-flow travel 
time to be consistent with how these statistics were calculated 
on urban freeways.

Vulnerability to Flow Breakdown

An alternative way to view travel time reliability is in terms 
of a facility’s vulnerability or susceptibility to disruptions 
that lead to congestion. That is, in the absence of recurring 

incidents on arterials do not have the same effect as on free-
ways. Since midblock flows of signalized arterials are largely 
controlled by the metering of upstream signals, the flows 
are well below what the midblock capacity would be with-
out the signals. This excess capacity absorbs the effect of 
single-lane or shoulder blockages at midblock locations. 
Some midblock incidents have little or no effect and do not 
produce the extreme travel times observed on freeways. 
However, if an incident occurs at the signal, where capacity 
already is restricted, there will be a major impact on traffic 
flow.

The morning distributions appear to be more compact 
and peaked than the afternoon distributions, which tend to 
be broader. This difference may be a function of higher con-
gestion levels in the afternoon; the team noticed a similar pat-
tern on congested urban freeways.

Figure 4.29. Orlando, Section 5, p.m. peak.

Figure 4.30. I-45 northbound, Texas (length = 61.4 miles).
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Figure 4.31. I-45 southbound, Texas (length = 60.0 miles).

Figure 4.32. I-95 northbound, South Carolina (length = 33.1 miles).

Figure 4.33. I-95 southbound, South Carolina (length = 33.1 miles).
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facility began to be highly vulnerable to breakdown. On aver-
age days, there is little noticeable congestion, but on the worst 
days, congestion builds rapidly. This period between TTI 
divergence and the uptick in average congestion is therefore 
extremely important from a traffic management standpoint.

Figure 4.35 shows the corresponding probability of con-
gestion (when speeds are less than 50 mph, identified in the 
HCM as the approximate point of breakdown flow) for the 
entire afternoon time period for the same location shown in 
Figure 4.34. Figure 4.36 shows two characteristics of conges-
tion at point locations. First, there appears to be a nonlinear 
relationship between average TTI and 95th percentile TTI, as 
seen in the steeper growth of the curves up to the peak. Sec-
ond, average volume peaked early (around 4:10 p.m.) and 
stayed relatively flat throughout the peak, indicating that 

congestion, there is a likelihood that a disruption (e.g., an 
incident) may cause congestion to form. Whether conges-
tion will materialize is a function of how severe the disrup-
tion is and how much traffic volume is present.

An analysis was undertaken to understand this effect using 
data from Atlanta. Figure 4.34 shows volumes and TTIs for 
individual stations (detectors in all lanes at a roadway loca-
tion) measured at 5-minute intervals for nonholiday week-
days. The transition from uncongested midday conditions to 
prepeak conditions can be seen around 2:50 p.m. Volumes 
started to increase quickly at about this time, and the 95th 
percentile TTI increased even more sharply. However, aver-
age TTI stayed almost unchanged until after 3:15 p.m. The 
point at which the 95th percentile and average TTIs diverged 
(i.e., 2:50 p.m.) can be thought of as the point at which the 

Figure 4.34. Beginning of weekday peak on I-75 in Atlanta at  
Station 750502 (2008).
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Figure 4.35. I-75 in Atlanta at Station 750502 (2008).



77

•	 I-285 Northern Arc, from I-75 to I-85 (10.37 miles)
–4 36 links eastbound, and
–4 34 links westbound.

The number of links is different for the directions because of 
station placement. For each directional section, morning and 
afternoon peak times were considered. The analysis pro-
ceeded as follows.

First, reliability metrics for the individual links were calcu-
lated for each direction and time slice. After this, reliability 
for the entire trip was calculated. A simple method of com-
bining the link reliability metrics was then used: all the met-
rics for the links were averaged to see if the resulting average 
was correlated with the trip metrics. Figures 4.37 through 4.39 
demonstrate that the metrics are very highly correlated. Sim-
ple nonlinear functions were then fit to the data. All coeffi-
cients were significant at an alpha level of 0.001 (most at an 
alpha level of 0.0001). Root mean squared error (RMSE) was 
used as a measure of goodness of fit when no intercept term 
was specified in the regression analyses.
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congestion suppressed volumes, as discussed earlier in this 
chapter under “Estimating Demand in Oversaturated Condi-
tions on Freeways.”

reliability of Urban trips Based 
on reliability of Links

The approach taken in this research for urban conditions was 
to define travel time reliability over a section of highway, typi-
cally 4 to 5 miles in length, with relatively homogenous geo-
metric and traffic conditions. In many transportation 
modeling applications, it is desirable to know the travel time 
of entire trips, and by extension, the reliability of trips. The 
data sources used in this study precluded studying entire trips 
(from origin to destination) because they were collected at 
the roadway level.

However, an experiment was conducted with urban free-
way data from Atlanta in an attempt to develop trip-based 
reliability. Specifically, the team was interested in seeing if the 
reliability of a trip could be predicted from the reliability of 
the individual links comprising the trip. Here trip means travel 
occurring solely on the freeway, as data for access to and egress 
from the freeway were not available. The term links refers to 
stations (detectors for all lanes at a specific location).

From the Atlanta section data, extended sections were devel-
oped by combining two adjacent sections. These combinations 
resulted in four one-way trips (one in each direction):

•	 I-75 North, from I-285 to Barrett Parkway (12.53 miles)
–4 25 links northbound, and
–4 20 links southbound; and
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Figure 4.37. Trip versus link reliability: mean TTI.

Figure 4.38. Trip versus link reliability: standard deviation.

Figure 4.39. Trip versus link reliability: 95th percentile TTI.
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their reliability metrics treated in the same way; that is, the 
reliability statistics of the nonfreeway links could be com-
bined with the freeway links’ reliability statistics. Finally, the 
trips used here were relatively short, even for urban condi-
tions. Longer trips may run into the same time dependency 
noted for long-distance trips in this chapter’s discussion of 
the Reliability of Rural Freeway Trips.
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where
X1 =  average of 95th percentile TTIs for all the links in the 

trip,
X2 =  average of 80th percentile TTIs for all the links in the 

trip,
X3 = average of mean TTIs for all the links in the trip,
X4 = average of median TTIs for all the links in the trip, and
X5 =  average of standard deviations of TTIs for all the links 

in the trip.

It should be pointed out that the strong correlation is prob-
ably due to the trip-based measures using travel times from 
individual links. However, in travel demand forecasting mod-
els, trip travel times are calculated this way. Although the 
analysis was restricted to freeway sections, the team does not 
see why nonfreeway links could not be added to the trip, and 

http://trb.metapress.com/content/u700713ur834410r/fulltext.pdf
http://trb.metapress.com/content/u700713ur834410r/fulltext.pdf
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C h a p t e r  5

Introduction

The objective of this chapter is to describe in detail the factors 
that cause congestion, with the specific intent of helping 
agencies respond cost-effectively to reduce the formation of 
congestion. The results of a series of analyses that examined 
the causes of freeway congestion, first in Atlanta, then in 
greater detail in the Seattle metropolitan region, are dis-
cussed. The analyses were based on an entire year’s worth of 
freeway operations data that covered a significant portion of 
freeways in the two regions. The freeway performance infor-
mation was combined with data that described when inci-
dents, accidents, and construction activity occurred and 
tracked the effects of weather. The effects of a variety of spe-
cial events in Seattle were also tracked. The analyses did not 
include an examination of ramp delays, either entering (ramp 
meters) or exiting (queuing due to inadequate ramp intersec-
tion capacity) the roadway.

Many analyses have been performed over the years to 
examine the causes of roadway delay (Table 2.5). Tradition-
ally those studies have been based on (a) queuing analysis of 
specific incidents; (b) simulation of specific roadway corri-
dors, given a limited set of volume conditions and incident 
and nonincident conditions; and (c) national scale estimates 
based on base roadway volumes and reported incident and 
crash rates.

preliminary Look at Congestion 
by Source: atlanta

A simple analysis was undertaken in Atlanta to develop a 
point of comparison for the detailed Seattle analysis. The 
times and locations of incidents and weather conditions dur-
ing the Atlanta study section peak periods were merged with 
the traffic data. Any incident that started 15 minutes before 
the peak start or lane-blocking incidents that started an hour 

before the peak start were assumed to influence the traffic 
flow and were counted. Each peak period was assigned an 
influencing cause: incidents, weather, or both. No attempt 
was made to track incident-caused queues in time and space; 
if an incident occurred at any time or location during the 
peak, the entire peak was described as incident influenced. 
This assumption will overstate the importance of incidents as 
a contributor to total congestion.

Overall, the recurring–nonrecurring split was roughly 
50–50 (Table 5.1). A breakdown of nonrecurring incidents 
appears in Table 5.2; the significance of incidents is clear, as 
roughly a third of the congestion occurred on days when inci-
dents occurred.

Figure 5.1 examines congestion causes for the 50 worst 
congestion peak periods on these sections (i.e., those with the 
highest Travel Time Index [TTI]). Another potential source 
of congestion, high demand, was added to incidents and 
weather (high demand was defined as days with demand vol-
umes higher than the average, plus 5%). For simplicity, the 
three sources were placed in a hierarchy, and only one source 
was assigned responsibility: incident, weather, or high vol-
ume, in that order. For example, if a day had at least one inci-
dent and high volumes, the cause was assigned as incident. 
Even with the addition of high demand, 21% of the days 
could not be assigned to a source. Several potential sources 
may explain these conditions:

•	 Congestion that forms off section and spills back into the 
study section, which could be from a downstream section 
or an exit ramp to either a surface street or an intersecting 
freeway; and

•	 Minor perturbations in traffic flow at a microlevel, which 
could be brief surges in demand or variations in driver 
behavior that cause flow breakdown when volumes are 
operating very near to physical capacity.

Estimating Congestion by Source:  
The Cause of Congestion
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a Closer Look at Congestion 
by Source: Seattle

Background

Analysis Overview

To examine some of the issues raised in the preliminary 
Atlanta analysis, a detailed analysis was conducted using data 
from Seattle. This effort used measured roadway perfor-
mance data (volumes and travel times taken every 5 minutes) 
for an entire year on approximately 120 centerline miles of 
urban freeway. These data included all crashes that occurred 
on those roadway segments, all noncrash incidents to which 
Washington State Department of Transportation (WSDOT) 
personnel responded, and National Oceanic and Atmo-
spheric Administration (NOAA) weather data for the region. 
Based on these data, the analysis examined how a wide variety 

of factors affected travel times experienced by travelers on 
different freeway sections throughout the Seattle metropoli-
tan region. Unlike traditional queuing analysis, using segment- 
based travel times over defined roadway segments as the 
dependent variable allowed the research team to explore the 
upstream and downstream impacts of a wide variety of dis-
ruptions, as well as to examine the effect of those disruptions 
on travel time reliability.

The primary intent of this section is to explore the causes 
of congestion on the instrumented Seattle freeway system 
and summarize those findings in a generalized manner so 
that the results are applicable elsewhere.

Table 5.1. Recurring Versus Nonrecurring Congestion During Peak Period 
in Atlanta (2008)

Congestion Type

Nonrecurring Recurring

Section
No. of 

Incidents
Congestion 

(%)
No. of 

Incidents
Congestion 

(%)

I-75 northbound from I-285 to 
Roswell Road

128 52.0 118 48.0

I-75 southbound from I-285 to 
Roswell Road

81 41.8 113 58.2

I-285 eastbound from GA 400 to I-75 89 46.8 101 53.2

I-285 westbound from GA 400 to I-75 126 56.5 97 43.5

I-285 eastbound from GA 400 to I-85 159 64.6 87 35.4

I-285 westbound from GA 400 to I-85 134 56.5 103 43.5

I-75 northbound from Roswell Road 
to Barrett Parkway

121 49.2 125 50.8

I-75 southbound from Roswell Road 
to Barrett Parkway

100 42.3 136 57.6

Total 938 51.6 880 48.4

Table 5.2. Congestion by Source 
During Peak Period in  
Atlanta (2008)

Source Congestion (%)

Recurring (bottleneck) 48.4

Incidents 32.8

Weather 11.1

Incidents and weather 7.7
Figure 5.1. Congestion causes for the 50 worst  
congested peak periods in Atlanta (2008).
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Factors Affecting Congestion

Given that congestion occurs when there is too much vol-
ume and too little roadway capacity, it can be said that all 
congestion is caused by having too much traffic volume. In 
some cases, too much volume is associated with routine tem-
poral fluctuations in demand, such as peak period commute 
congestion in urban areas. In other cases, congestion is asso-
ciated with demand associated with special events, such as 
sports or cultural activities. In still other cases, analysis sug-
gests that microscale variations in demand during periods of 
already high demand can cause congestion even when hourly 
volumes would not indicate that capacity has been reached.

However, traffic engineers know that roadway capacity is 
not a constant. A variety of factors reduce effective or opera-
tional roadway capacity from the normal capacity figures that 
are computed with Highway Capacity Manual procedures. 
These factors can cause congestion even when volumes are 
lower than normal, theoretical roadway capacity.

It is commonly accepted that there are a limited number of 
basic factors that cause congestion to form; these are usually 
referred to as the seven sources of congestion:

1. Traffic incidents;
2. Weather;
3. Work zones;
4. Fluctuations in demand;
5. Special events;
6. Traffic control devices; and
7. Bottlenecks or inadequate base capacity.

Traffic incidents (including crashes, debris on the roadway, 
and other types of incidents) decrease effective capacity either 
by physically blocking lanes or by producing visual distractions 
that cause motorists to slow, resulting in lowered roadway 
throughput.

Weather has similar effects on effective roadway capacity. 
Poor weather causes drivers to drive more cautiously, slowing 
down and leaving more space between vehicles to maintain 
safety, thus reducing effective roadway throughput.

Work zones narrow lanes or reduce the total number of 
lanes available. They also can reduce speed limits and fre-
quently include right- or left-lane shifts. All these physical 
changes decrease available or effective roadway capacity.

Fluctuations in demand cause congestion because 
demand that exceeds roadway capacity causes queuing to 
occur, and that queuing reduces effective vehicle throughput. 
Thus, the arrival rates (timing) with which vehicles access a 
roadway segment is another cause of congestion. In a simple 
example, a two-lane (one-direction) freeway has a capacity of 
4,000 vehicles per hour (vph). In a 3-hour period, 11,000 
vehicles need to use that facility. If that demand is uniformly 
distributed, no congestion occurs, as volume never exceeds 

4,000 vph. However, if demand arrives at the roadway section 
in the form of 2,200 vehicles in the first hour, 5,000 in the 
second hour, and 3,800 in the third hour, congestion will 
occur in the second hour. That congestion will cause queuing 
that will, effectively, further reduce roadway capacity, creating 
delays even in the third hour, despite the fact that demand is 
then lower than theoretical capacity.

Special events cause congestion because they create signifi-
cant fluctuations in demand. The starting and ending times of 
major events create surges in traffic demand that overwhelm 
roadway capacity near the event venue, causing congestion.

Traffic control devices (e.g., traffic signals) delay some 
vehicles to allow other vehicles to move safely. Therefore, by 
definition, traffic control devices create (control) delay. When 
optimally timed, traffic control delays minimize congestion. 
When not optimally timed, traffic control devices create 
unnecessary delays to vehicles.

Inadequate base capacity and bottlenecks create delay in the 
same way that traffic volume fluctuations cause delay. Inade-
quate base capacity (i.e., not enough roadway capacity for nor-
mal traffic flows) most frequently manifests itself at points 
along a segment of roadway where effective capacity is routinely 
lowest—a bottleneck. Bottlenecks are a decrease in effective 
roadway capacity that occur as a result of some physical change 
in roadway geometry or environment (e.g., a lane drop, a weav-
ing section). That geographic location becomes the initial point 
at which traffic demand first exceeds effective capacity, causing 
queuing, which further decreases effective capacity.

As the above discussion indicates, two of the causes of con-
gestion (fluctuations in demand and special events) influence 
the demand side of the volume–capacity relationship, which 
ultimately determines formation of congestion, and the other 
five influence the actual volume-carrying capacity of the road-
way. The cause of congestion has significance to transporta-
tion agencies, in part, because it describes the level of control 
the agency has over that measure, and consequently the level 
to which it can anticipate and mitigate congestion formation. 
For example, the agency has no control over weather; it can 
only react to weather events. But the agency can directly 
influence other causes, such as the operation of traffic control 
devices or the design and timing of work zones.

Data Description

Traffic Incidents

Data on traffic incidents were obtained from WITS, the WSDOT 
incident response program resource management system data-
base, and the State of Washington’s accident reports.

The more detailed and useful data source is the WITS data-
base, which was created to track the work performed by 
WSDOT’s freeway service patrol personnel. Key variables for 
each task performed by WITS field staff are recorded, giving 
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WSDOT a record of when an incident was reported (used as 
an estimate of when that event occurred), as well as when the 
incident respondent declared the site of the incident cleared. 
The location (route, milepost, and direction) of the incident 
and whether a lane of traffic was blocked by the incident are 
also reported. Although these data allow detailed analysis of 
different incident types, this project limited the analysis to 
(a) when and where an incident occurred, (b) how long that 
incident lasted (in seconds), and (c) whether that incident 
closed a lane.

In 2006 WITS reported only WSDOT’s incident response 
team actions, so no records exist for incidents to which WITS 
personnel did not respond. Because most WITS staff work 
during the peak commute periods, many incidents occurring 
on weekends or at night are not reported in WITS. This is a 
limitation of this analysis database.

Accident records were used to supplement the WITS data. 
Accident records should be present for all significant acci-
dents that occurred within the study area. During peak peri-
ods, accident records generally match with WITS records, as 
WITS members are usually called to the scene of accidents 
when they are on duty. In a number of instances accident 
records and WITS records appeared to reference the same 
event but listed slightly different starting times. This project 
did not try to identify which of these times were correct, but 
kept both, and used the time related to a particular kind of 
event. That is, for an analysis of crash effects, the time from 
the accident record was used. If the analysis concerned the 
effects of all incidents, then the time noted in the WITS data-
base was used.

During times when WITS was not actively patrolling or on 
the rare occasions when WITS staff were busy on other calls 
and did not respond to an accident scene, the accident records 
indicate the occurrence of the accident but not the duration 
of the disruption. This is another limitation of this analysis 
database.

Weather

The weather data used for these analyses were obtained from 
publicly available records collected from the NOAA weather 
station at Sea-Tac International Airport. The analytic data-
base created for this study tracked the major statistics reported 
by NOAA, including the following weather information:

•	 Visibility
44 Up to 10 miles;

•	 Temperature
44 Dry bulb;

•	 Wind speed
44 Average speed, and
44 Gust speed (highest gust speed that hour);

•	 Precipitation
44 Inches; and

•	 Weather type
44 Rain,
44 Mist,
44 Thunderstorm,
44 Drizzle,
44 Haze,
44 Snow,
44 Freezing,
44 Small hail,
44 Hail,
44 Ice pellets,
44 Squall, and
44 Fog.

These data were too detailed for the basic analyses intended 
for this study. Consequently, the project team performed an 
extensive analysis to determine the types of summary weather 
statistics that would effectively indicate whether weather con-
ditions contributed to congestion. A summary of these tests 
is given in Appendix E, and findings from the most important 
tests are presented later in this chapter. The outcome of the 
analysis was to define the indicator of bad weather as any time 
period in which any measurable precipitation had fallen at 
some time in the previous hour. Importantly, the use of this 
indicator discounts several weather effects, including wind, 
fog, snow, and rainfall intensity.

An analysis of the effects of wind on roadway performance 
indicated that on the two roadways (I-90 and SR 520) that 
cross Lake Washington on floating bridges, high winds (gusts 
above 20 mph) had an observable effect in moderate volume 
conditions, especially eastbound when the winds caused 
waves to crash against the bridge, creating significant spray. 
(Winds are generally from the south, so the spray affects the 
eastbound traffic more than westbound traffic.) However, 
wind appeared to have little observable effect on the other 
freeway corridors in the region.

The analysis of the effects of fog was problematic, as fog 
tends to be localized. Thus, while the airport could be very 
foggy (to the point that landings and take-offs are restricted for 
lack of visibility), at the same time I-5, passing within 2 miles 
of Sea-Tac, could have clear visibility. As a result, a fog variable 
was not useful in identifying specific fog-related delays.

The examination of fog as a weather variable highlighted 
the problems associated with using weather data from a sin-
gle point to represent weather experienced around a fairly 
large geographic region. That is, although the Sea-Tac weather 
records accurately reflect conditions at the airport, the 
weather experienced simultaneously in other areas of the 
metropolitan region can be different. For example, a storm 
moving south to north that affects Sea-Tac at 5:00 p.m. will 
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have occurred in the southernmost roadway sections before 
5:00 p.m. and in the northern part of the city some time after 
5:00 p.m. In addition, that storm may have dropped exactly 
0.25 inch of rain at the airport, but it may have deposited only 
0.1 inch south of the airport, and 0.5 inch in areas north of 
the airport. Although these rain data provide a reasonable 
estimate of weather conditions, they cannot be used as a pre-
cise, highly accurate measure of the actual weather occurring 
on any given segment of roadway during a specific 5-minute 
interval.

In addition to the basic time and geographic problems 
noted above, the snow and rainfall intensity variables pre-
sented a second problem in that many of the effects of heavy 
rain (i.e., heavy rain short of intense thundershowers, which 
rarely happen in Seattle) occur after the precipitation has 
fallen. This is especially true for snowfall, as the effects of fall-
ing snow are not nearly as significant as the effects of snow 
accumulations on the ground, depending on the amount 
remaining on the roadway. For example, snow flurries have 
little effect on driving, but 4 inches of snow on the ground  
2 hours after the snow has stopped falling has a major impact 
on roadway performance.

Another issue associated with snowfall in the Seattle area 
arose from the combination of how rarely snow falls in the 
region and how travel times are computed. When snow falls 
(and sticks), Seattleites tend to avoid driving whenever pos-
sible. The region does not use salt; agencies do not clear snow 
as effectively as those in regions of the country that routinely 
experience snowfall; and snow is frequently turned into sheet 
ice on the roadways by cars that do travel, making the area’s 
hilly terrain dangerous. The result is that a large percentage of 
travelers simply avoid going out. Therefore, after snow falls, 
volume and lane occupancy are frequently low on the free-
ways despite the slow speed of those cars that are present. 
However, the loop detector system only sees low volumes and 
occupancy values, and can thus overestimate the speeds at 
which the vehicles are moving. Fortunately for this study, the 
number of days on which snow fell during the analysis year 
was small.

Work Zones

To identify work zones, variable messages sign (VMS) logs 
were examined. From the VMS logs, it was possible to iden-
tify where, when, and for what period work zone messages 
were posted. It also was possible to determine from the logs 
when lanes were closed, but the number of lanes closed for a 
given construction lane closure was not incorporated into 
the analysis database. The closure times recorded in the VMS 
logs are approximate (e.g., 9:00 p.m. to 5:00 a.m.) and do not 
represent the exact time when lanes were actually closed or 
open to traffic.

Long-term construction changes (e.g., narrowed lanes dur-
ing lengthy construction projects or the presence of construc-
tion barrels on shoulders in and approaching a work zone) 
that are likely to also cause minor disruptions in normal traffic 
flows are not included in the VMS database. However, because 
the freeways examined were major urban highways, all work 
zones had nighttime and weekend closures. No lanes were 
closed during normal weekday business hours.

Fluctuations in Demand

Volume data for the study were obtained from FLOW, the 
WSDOT Northwest Region’s traffic management center data-
base system. All traffic volume data used in the study were 
collected with permanent inductive loops that are part of that 
system. Loops are located roughly every half mile on the free-
ways analyzed. Each loop reports total volume every 5 min-
utes, as well as average lane occupancy for that location.

Because 5 minutes is the basic WSDOT data-reporting 
period, the analyses for this report were based on these 
5-minute periods. Traffic volumes were available every 5 min-
utes, for every roadway study segment, for all 365 days for 
2006. Some corridors were missing specific days or times of 
data because of equipment malfunction.

Because volumes varied over the course of the roadway 
study segments, several volume statistics were used to describe 
each 5-minute period for each roadway segment. These are

•	 The maximum volume observed for the roadway segment 
in that 5-minute interval;

•	 The minimum volume observed for the roadway segment 
in that 5-minute interval;

•	 The average volume over the length of the segment;
•	 The vehicle miles traveled for the segment; and
•	 The vehicle hours traveled for the segment.

Volumes were reported in units of vehicles per hour.

Special Events

Some special event data were collected by manually reviewing 
calendars for major regional venues (e.g., the Seattle Mari-
ners’ game schedule allowed the researchers to identify the 
dates and start times of Mariner baseball games in 2006). 
However, it quickly became apparent that collecting uniform 
special event data would not be possible. In part, this was 
because there is no uniform definition of how big an event 
must be to be classified as a special event. Major league base-
ball games with 30,000 people attending undoubtedly qualify, 
but do major college basketball games with 8,000 people 
attending? What about games with 2,500 people? Although 
all major sporting events have known start times, many 
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(e.g., baseball) do not have consistent durations, and their 
ending times are not easily determined. The lack of a defi-
nite duration complicated the analysis of postevent traffic, 
in many cases beyond what could be addressed in this 
project.

Although there is little argument that major sporting 
events are special events, what about community events? 
Large events such as July 4 fireworks displays are obviously 
special events from a traffic perspective, but what about 
parades or conventions? Not only are the sizes of these events 
difficult to obtain, but their start and end times are far less 
consistent, especially in terms of when traffic volumes going 
to and from those events affect roadway performance.

A final consideration in developing the analysis data set 
was that special event traffic generally only affects roadway 
performance near the event venue. That is, when a major col-
lege or professional football game takes place, traffic near the 
stadium is bad, but traffic farther from the stadium is often 
light (because a large percentage of the population is at the 
game or watching it on television). Previous work for WSDOT 
showed that while special event (professional baseball and 
basketball) traffic had statistically significant effects on major 
freeways leading to the event locations, roadway performance 
in the opposite direction before the game began was generally 
not statistically significantly different (1).

Consequently, special event data need to be applied on a 
site-specific basis; descriptive information (time, location, 
and size) and local knowledge of the likely routes of travel 
affected by the event are required. These site-specific require-
ments made attempting to analyze 21 roadway corridors on 
five freeways covering approximately 120 centerline miles of 
roadway problematic. In the end, the project team decided to 
simply use the volume data from the freeway and to analyze 
the effects of special events as case studies to illustrate the 
relative size and significance of their impacts.

Traffic Control Devices

This study did not collect data on traffic control devices. All 
sections of freeway under study operate under ramp meter-
ing control. The fuzzy, neutral ramp-metering algorithm 
used by WSDOT changes ramp metering rates dynamically in 
response to a combination of inputs, including mainline vol-
umes and lane occupancy values at the ramp, upstream of the 
ramp, and downstream from the ramp, as well as the presence 
of ramp queues and the determination of whether those 
queues are long enough to affect arterial operations.

Ramps are metered whenever congestion routinely forms. 
This includes all commute periods and most weekend after-
noons for freeways near the downtown core areas. Metering 
is only applied in the direction in which congestion is (or has) 
formed.

Because only 1 year of data were analyzed in this study, it 
was not possible to determine the effects of the ramp-metering 
algorithm on congestion. A case study is presented below that 
describes the benefits obtained from meters. Other than that 
case study, traffic control devices are not examined in this 
report.

Bottlenecks and Inadequate Base Capacity

No specific data were collected relative to the base capacity of 
the roadways being studied. Several major bottlenecks are 
represented in the data set. In most cases, bottlenecks are 
located at the ends of study sections. One type of bottleneck 
is a ramp terminal at the end of a roadway. Two examples of 
this occur: the eastern end of SR 520 (affecting SR 520 Red-
mond eastbound) and the western end of I-90 (affecting I-90 
Seattle westbound). A second type of bottleneck is a freeway-
to-freeway ramp interchange, where ramp volumes overwhelm 
the interchange capacity. One example is the interchange 
between northbound SR 167 and I-405 (both directions). 
This bottleneck affects SR 167 Renton northbound, I-405 
Kennydale southbound, and I-405 South northbound. Other 
freeway-to-freeway ramps also contribute to congestion, usu-
ally because the mainlines to which they lead experience rou-
tine backups. Although these may not be classic bottlenecks, 
ramp queues can cause congestion. Freeway-to-freeway 
ramps that exhibit these conditions fairly frequently include 
SR 520 Redmond going westbound to I-405 Kirkland north-
bound and I-405 Bellevue central business district (CBD) 
southbound; SR 520 Seattle westbound to I-5 Seattle North 
northbound; and I-5 Seattle CBD southbound. Both the 
northbound Seattle CBD and southbound Seattle North sec-
tions of I-5 can be affected by queues extending from the 
eastbound SR 520 Seattle study section. Similarly, both direc-
tions of the Seattle CBD sections of I-5 are affected by queues 
on the westbound I-90 Seattle section. Finally, the I-90/I-405 
ramps cause delays primarily to four movements: to west-
bound I-90 from the northbound (Eastgate) and southbound 
(Bellevue CBD) sections of I-405, and to westbound I-90 
from northbound I-405. The ramp to southbound I-405 also 
backs up, but the queues to that ramp rarely affect I-90 per-
formance because of the storage available on the ramps.

The I-5 Seattle CBD sections in both directions contain 
several bottlenecks. In addition to the freeway interchanges, 
this section of freeway is affected by several C-class weaving 
movements, a variety of lane drops and adds, and the north-
bound entrance and southbound exit from the I-5 express 
lanes. (The performances of the I-90 and I-5 express lanes 
were not included in this study.) The southbound entrance 
and exit to the express lanes also affect traffic on I-5 south-
bound on the North King study section and northbound on 
the Seattle North section. The I-90 express lane entrances and 
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exits have less of an impact (the westbound on-ramp mod-
estly affects the I-90 bridge section in both directions).

The other major bottlenecks of special significance are the 
two Lake Washington floating bridges (SR 520 and I-90). The 
entrances to the SR 520 bridge, in particular, are major bottle-
necks, as they both involve a combination of narrow lanes, 
strong visual impacts, and ramp entrances. In both cases, the 
bridge bottlenecks are located in the middle of the study sec-
tion. The affected sections are the two Seattle sections of SR 520 
and the two bridge sections of I-90.

No attempt was made to quantify the specific capacity reduc-
tions caused by these bottlenecks. However, as the results 
presented later in this report show, these sections all experi-
ence considerably more delay than freeway sections without 
bottlenecks.

Computed Variables Used for Tracking the Influence 
of Disruptions on Travel Times and Delays

The interaction of all of the factors discussed above is very 
complex. All analytic methodologies have limitations when 
trying to determine how each factor of a given set of factors 
affects the delays experienced by a traveler using the roadway 
system. To decrease the effects of these limitations, the research 
team developed additional variables to help associate travel 
times and delays with specific disruptions. To understand 
the need for these variables, consider the following example 
incident.

A major traffic accident occurs early in the morning, before 
the start of the morning commute, in the outer extent of the 
metropolitan region. The accident blocks most of the freeway 
and lasts 2 hours, forming a significant queue despite the 
early hour. Because traffic from the outlying areas is blocked, 
inbound commute travel times downstream of the accident 
start off better than normal. The accident is cleared after the 
morning commute peak begins. Once the accident has been 
cleared, a major pulse of traffic flows downstream from the 
accident location because the roadway clearance releases the 
large queue of vehicles stored upstream of the accident scene. 
That pulse of traffic nearly equals roadway capacity. When 
normal on-ramp volumes are added to that flow, congestion 
forms in unusual locations. The result is significant travel 
time delay that continues well after the accident has been 
cleared from the roadway, with the congestion occurring well 
downstream of the accident location.

If a queuing analysis is performed for the accident location, 
only the delay computed upstream of the accident location is 
attributed to the accident, as the downstream congestion 
occurs both after the accident has been cleared and at loca-
tions that are geographically removed from the accident site. 
Thus, the delays associated with the accident are computed to 
be smaller than the real congestion caused by the accident, 

which should include the delays occurring downstream of the 
accident site.

At the same time, some of that congestion should rightly 
be attributed to routine peak period morning traffic, which 
always causes congestion. Therefore, not all the delays in the 
corridor should be attributed to the accident. The delays are 
influenced by the accident, but high volumes also contributed 
to the measured delay.

With the above scenario in mind, the project team devel-
oped a set of variables to help relate the measured performance 
of the roadway (travel times, volumes, and delays) to known 
disruptions. A value was assigned for each of these new, 
computed variables for every 5-minute time interval in the 
analysis data set (i.e., all of 2006). These additional variables 
included the following:

•	 Travel delays were computed by corridor segment so that 
all delay (any travel less than 60 mph, in units of vehicle 
seconds) was computed.

•	 The times when potential disruptions took place were 
identified for each type of disruption event, and variables 
identifying that a disruption was active or not present were 
created for each 5-minute interval for the year.

•	 Binary influence variables were computed for which influ-
ence was defined as occurring when either (a) the potential 
disruption event was active during a given 5-minute period 
or (b) travel times for the corridor were observed to be 
slower than any observed during the observed disruption. 
This definition of influence essentially means that slow-
downs occurring in the corridor during the period of 
active disruption are at least partially caused by that dis-
ruption; that is, travel times are influenced by a given dis-
ruption. In the analysis, the binary influence tag stays on 
until travel times in the corridor return to values equal to 
or faster than the fastest travel time observed during the 
duration of the event itself. That is, if a crash or incident 
occurs at the beginning shoulder of a peak period and 
some congestion forms (even if the majority of that con-
gestion is caused by the increasing peak period volumes), 
then the influence tag will likely stay on until after the peak 
period congestion eases. This is an intended outcome. It 
signals that the disruption (crash or incident) may have 
caused congestion to be worse and last longer than it other-
wise would have. The influence tag is turned off once 
travel times return to predisruption levels, indicating that 
any queues present in the corridor are no larger than those 
that existed before the effects of the disruption. (A more 
complete discussion of the influence variables is found in 
Appendix D.)

•	 Influence variables were computed for (a) all incidents, 
(b) only those incidents that involved lane closures, (c) vehi-
cle crashes, (d) active construction events, (e) bad weather, 
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and (f) rubbernecking, where rubbernecking was defined as 
a time during which a crash or incident was active on the 
roadway section being studied, but in the opposite direc-
tion of travel. A variety of influence variable calculations 
were computed and tested. Variables were developed that 
would allow off-segment congestion influences to be related 
to the segment under study. (A detailed description of the 
variable codes or categories used to indicate the influence 
of congestion from off-study segments on the study sec-
tion of interest is found in Appendix C.) These variables 
were activated when the first detector (mainline or ramp) 
downstream of the study section had an occupancy value 
of greater than 35% for the 5-minute period of interest. 
When that occurred, these variables were set to a categori-
cal value that described the influences on the congestion of 
that downstream segment. Variables were created for the 
downstream mainline roadway sections, for freeway-to-
freeway ramps known to experience backups, and for major 
off-ramps known to spill back on the mainline roadway 
during peak commute periods. These variables were designed 
to allow transfer of the effects of a downstream disruption 
to an upstream roadway study segment when queues from 
that disruption extended off the end of the downstream 
segment. For example, if a crash on the roadway section 
just north of the CBD caused a queue on I-5 northbound 
that reached the detector just downstream of the north-
bound CBD roadway study section, the variable represent-
ing the mainline roadway section downstream of the CBD 
section would be set to crash-influenced congestion so that 
analyses of the CBD roadway section would include the 
fact that an off-segment crash was influencing the perfor-
mance of the roadway segment.

•	 The regime variable was developed to describe the worst 
condition found in the test segment during each 5-minute 
interval. (A detailed description of the regime variable is 
found in Appendix C.) Regime is a categorical variable in 
which 1 = free-flow traffic, low volumes; 2 = free-flow traf-
fic, less than one lane of capacity remains; 3 = constrained 
flow, very high volumes; 4 = congestion exists; and 5 = 
recovery. Regime, which is illustrated in Figure 5.2, was 
used to define the basic operating condition of the road-
way study section.

•	 Six binary variables were defined to indicate whether a road-
way section moved from a free-flowing regime to a con-
gested regime within a given time frame. These variables 
allowed an estimate of the probability that a specific event 
resulted in congestion formation when the period was 
compared with similar time periods on other days when 
operating conditions were similar. Three binary variables 
described whether roadway operation moved from Regime 2 
to Regime 4 within 5, 10, or 15 minutes. The other three 
variables described whether roadway operation moved from 
Regime 3 to Regime 4 within 5, 10, or 15 minutes.

•	 The time when congestion ended was computed for both 
the a.m. and p.m. peak periods. This time was defined as 
the first 5-minute period after the start of the peak period 
(7:00 a.m. or 4:00 p.m.) when travel times were no more 
than 5% above travel at the speed limit. For example, if 
travel at the speed limit required 300 seconds, congestion 
ended for the peak period on any given day when four con-
secutive travel times were observed to be below 315 sec-
onds. (A more complete discussion of this variable is 
included in Appendix C.) On 11 of the 42 study sections, 
this definition created mean congestion ending times for 

Figure 5.2. Illustrations of roadway operating regimes.
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the a.m. peak period that were later than noon because of 
various volume and bottleneck conditions that caused 
midday traffic to routinely travel below the speed limit. For 
some specific analyses, congestion was defined on these sec-
tions only as being when travel time dropped to within 10% 
or 20% of travel at the speed limit.

Findings from Seattle

The findings are divided into four major subsections:

1. Congestion by source;
2. The effect of weather;
3. The effects of crashes and incidents on travel times; and
4. The effects of crashes and noncrash incidents on the 

extent of congestion.

The first subsection examines, at an aggregated annual 
level, how delay changes with different types of disruptions to 
the fixed infrastructure. Congestion sources examined include 
weather, crashes, other noncrash incidents, and construction 
activities.

The second subsection looks specifically at how weather, 
primarily rain, affects travel times and congestion formation.

The third subsection examines how travel times change 
given the occurrence of incidents and the queues that result 
from those incidents. As part of this analysis, the specific effects 
of vehicle crashes are examined, both independent of noncrash 
incidents and in combination with noncrash incidents.

The fourth subsection examines how the duration of peak 
period–related congestion changes as a result of crashes and 
noncrash incidents. The intent of this analysis was to put into 
context how crashes and incidents change the travel experi-
ences of commuters in a congested urban area.

Congestion by Source

This analysis examined how different types of disruptions 
influence the formation of congestion and the degree of delay 
experienced by travelers. It covered only general-purpose 
travel lanes (no high-occupancy vehicle [HOV] or high-
occupancy toll lanes) and used units of vehicle hours of delay, 
not person hours, as the available data did not account for 
changes in vehicle occupancy during different days of the 
week, times of day, or types of facilities (e.g., weekends having 
much higher vehicle occupancy rates than weekdays, com-
mute hours having generally higher occupancy rates than the 
middle of the day on weekdays, and HOV lanes having much 
higher occupancy rates than general-purpose lanes). The 
analysis covered only urban freeways in the Seattle metro-
politan region. The analysis did not attempt to differentiate 
among relative causes when two or more causative factors 

were present. That is, when a crash happened in the rain dur-
ing the peak period in the peak direction, the analysis did not 
attempt to determine how much of the delay was caused by 
the crash, how much was caused by rain, and how much was 
caused by high peak period volumes.

Methodology

The congestion by source analysis computed delay per 5- 
minute period for all 5-minute periods in the year (2006) and 
assigned that delay on the basis of the influence variables 
associated with each of those 5-minute periods. (See Appen-
dix C for a description of the influence variables.) Delay was 
computed with the following equation:

delay actual travel time travel time at the= − speed limit
roadway segment volume

( )
( )�

where roadway segment volume was the maximum volume 
observed in the study section for that 5-minute period. Actual 
volume counts tend to underestimate the number of vehicles 
queued within a section during times of heavy congestion; 
consequently, this equation slightly overstated delay in lower-
volume periods but better estimated the number of vehicles 
actually in the roadway section during times of peak conges-
tion. When study section travel times were faster than the 
speed limit, conditions were assumed to be operating at the 
speed limit.

A categorical variable was developed that allowed any 
combination of influences to be maintained simultaneously. 
The following influences were tracked:

•	 No cause indicated;
•	 Only incident-influenced queues are present;
•	 Only crash-influenced queues are present;
•	 Only rain is present;
•	 Both a crash and an incident have influenced queues that 

are present;
•	 Both rain and an incident have influenced queues that are 

present;
•	 Both rain and a crash have influenced queues that are 

present;
•	 Rain, a crash, and an incident have influenced queues that 

are present;
•	 Queues from a ramp have influenced mainline queues, but 

the ramp delays have no identified influence factor;
•	 Construction activity has influenced queues;
•	 Construction and queues from a ramp (cause unknown) 

have influenced mainline queues;
•	 Construction and an incident have influenced queues that 

are present;
•	 Construction and a crash have influenced queues that are 

present;
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•	 Construction and rain have influenced queues that are 
present;

•	 Construction, a crash, and an incident have influenced 
queues that are present;

•	 Construction, rain, and an incident have influenced queues 
that are present;

•	 Construction, rain, and a crash have influenced queues 
that are present; and

•	 Construction, rain, a crash, and an incident have influ-
enced queues that are present.

Delay statistics were then aggregated by type of influence 
present. Traffic volume, whether it was routine volume or an 
unusual surge in volume associated with something like  
a special event, was not explicitly tracked in this analysis. 
Un explained congestion was assumed to be caused exclu-
sively by the presence of too much traffic volume.

Results

Table 5.3 summarizes the amount of delay influenced by each 
type of disruption tracked in this study. Percentage of delay 
was computed by totaling all vehicle hours of delay in the 
region associated with each type of disruptions, and then 
dividing by the sum of all measured delays. This computa-
tion automatically weighted the delays experienced by each 
roadway on the basis of the relative number of vehicle hours 
traveled on that roadway section.

Of interest is the fact that rain had almost as much influ-
ence on congestion as vehicle crashes. Not surprisingly, con-
struction (defined as lane closures during active construction 
or maintenance activity) had the least influence on conges-
tion formation. The percentage of delay associated with 

construction is small mainly because construction closures 
are only allowed on urban area freeways during the late-night 
hours, when volumes are low. Thus, even when congestion 
(measured in terms of either the queue length or the amount 
of time an individual spends in that queue) is significant as a 
result of construction lane closures, total vehicle delay (vehi-
cle hours) is small relative to the amount of delay experienced 
in the peak periods, when volumes are high.

One type of construction delay not included in Table 5.3 is 
delay caused by the temporary geometric changes (narrowed 
lane widths, lane shifts) that are commonly required by many 
urban freeway construction activities. These geometric restric-
tions are likely to cause congestion to form earlier and last 
longer than it would with the roadway’s normal geometry. 
The project team did not attempt to establish when these 
semipermanent geometric conditions were implemented, nor 
did the team attempt to associate delays with these changes 
during nonclosure hours (e.g., a.m. and p.m. peak periods).

“No cause indicated” in Table 5.3 means that no cause of 
congestion was reported other than high traffic volume levels. 
The team examined a number of these conditions as case 
studies. It was clear from that review that a variety of disrup-
tions occur that affect traffic flow but that are not recorded 
within conventional traffic operations databases. Many of 
these disruptions are visual distractions (e.g., boats on the 
lake, slowdowns due to sunglare) that cause measurable 
delays only when traffic volumes are relatively high. In some 
of the case study investigations, traffic volumes on the study 
corridor were abnormally high because of disruptions on 
parallel roadways. This analysis did not attempt to track route 
diversion onto parallel roadways and, therefore, was not able 
to associate congestion on one roadway with disruptions 
occurring on a second roadway. This subject is discussed in 
more detail later in this section.

Table 5.4 shows a more disaggregated version of Table 5.3 
in that it tracks multiple disruptions occurring at the same 
time. Table 5.4 also illustrates the wide variation among the 
42 study sections in the percentage of delay influenced by any 
given cause (e.g., incident-influenced queues may have been 
much more prevalent at one study site than at another) by 
presenting the maximum and minimum values observed for 
each combination of delay causes.

Table 5.5 shows the total number of vehicle hours of delay 
measured. Note that the northbound I-405 data sets are miss-
ing about 1.5 months of data (mostly from November and 
December); other corridors periodically missed days or weeks 
of data as a result of various data quality and availability 
issues. These missing data mean that the total measured delay 
was not the true annual delay for the region’s freeways. How-
ever, the missing data should have only a marginal effect on 
the percentages of delay associated with different types of dis-
ruptions. In general, the roadway corridors with the highest 

Table 5.3. Percentage of Delay by Type 
of Disruption Influencing Congestion

Type of Disruption Delaya (%)

Incidents 38.5

Crashes 19.5

Bad weather (rain) 17.7

Constructionb 1.2

No cause indicated (mostly volume) 42.2

a Delays that occurred when more than one type of disruption 
influenced the size and scope of that delay were counted in 
each of the categories of disruption and, therefore, the per-
centages total to more than 100%.
b Construction delays do not include any delays caused 
because general roadway capacity was reduced as a result of 
temporarily narrowed or reconfigured lanes. Construction 
delay was computed only when construction activity actively 
took place along the roadway.
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percentage of delay attributed to unknown causes tended to 
be those roadway sections with the least absolute vehicle 
delay. That is, nine of the 10 sections with the highest per-
centage of delay not caused, at least in part, by a known traffic 
disruption were among the 13 sections with the lowest total 
vehicle delay for the year.

The converse of this statement was not true. Although the 
two test sections with the most vehicle hours of delay did have 
fairly low percentages of delay not associated with known dis-
ruptions, only half of the 10 test sections with the highest 
vehicle delay were among the 10 sections with the lowest per-
centage of congestion influenced by an unspecified disrup-
tion. The sections with very large amounts of total vehicle 
delay and large amounts of delay caused by unknown disrup-
tions were all segments where frequent, significant peak 
period delays occurred. The westbound segment of the 

SR 520 Seattle bridge has a large bottleneck at the eastern end 
of the 2-mile-long floating bridge. Both SR 520 and I-405 
Kennydale (both directions for both corridors) operate near or 
above capacity for 10 to 14 hours per day. The two I-5 sec-
tions (the South section northbound and North King section 
southbound) experience routine a.m. peak congestion. Con-
sequently, it is reasonable to assume that large amounts of the 
delay in these corridors are simply caused by too much peak 
period volume.

The percentage of delay occurring with no reported dis-
ruption also was compared with the a.m. and p.m. peak 
period travel rates (defined as the mean travel time for the 
peak period converted to units of minutes per mile) for each 
corridor. No correlation between these values was apparent.

This lack of correlation between different measures of con-
gestion and the amount of delay without a known disruption 

Table 5.4. Percentage of Delay by Type of Disruption Influencing That Congestion

Type of Disruption Delay (%)
Maximum Percentage 
Within a Corridor (%)

Minimum Percentage 
Within a Corridor (%)

No cause indicated 37.1 74.2 14.3

Incident-influenced queues are present 23.9 48.2 1.0

Crash-influenced queues are present 6.0 25.3 1.7

Rain is present 8.4 25.8 2.0

Both a crash and an incident have influenced 
queues that are present

9.2 23.9 0.5

Both rain and an incident have influenced 
queues that are present

5.0 8.9 0.0

Both rain and a crash have influenced queues 
that are present

1.6 8.7 0.2

Rain, a crash, and an incident have influenced 
queues that are present

2.4 13.6 0.0

Queues from a ramp (cause unknown) have 
influenced mainline queues

5.1 37.3 0.0

Construction activity has influenced queues 0.6 16.2 0.0

Construction and queues from a ramp (cause 
unknown) have influenced mainline queues

0.0 0.2 0.0

Construction and an incident have influenced 
queues that are present

0.2 2.6 0.0

Construction and a crash have influenced 
queues that are present

0.1 1.4 0.0

Construction and rain have influenced queues 
that are present

0.1 4.6 0.0

A crash, an incident, and construction have 
influenced queues that are present

0.1 1.2 0.0

Construction, rain, and an incident have  
influenced queues that are present

0.0 0.5 0.0

Construction, rain, and a crash have influenced 
queues that are present

0.0 0.7 0.0
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Without a Known Type of Disruption

Corridor Vehicle Delay (h)
Delay Not Associated 
with a Disruption (%)

I-5 Seattle CBD northbound 28,689,099 14.3

I-5 Seattle North southbound 19,828,935 23.1

I-5 South southbound 14,063,546 27.7

I-5 Seattle CBD southbound 12,997,924 21.5

SR 520 Seattle bridge westbound 12,901,102 43.3

I-405 Kennydale northbound 11,531,897 55.3

I-405 Bellevue southbound 11,345,712 20.8

I-405 Kennydale southbound 11,077,760 56.9

I-5 North King southbound 10,782,330 45.2

I-5 South northbound 10,441,430 41.6

I-405 Kirkland southbound 9,655,929 34.0

I-405 Kirkland northbound 9,651,791 24.4

I-405 North southbound 9,116,178 44.2

I-5 Lynnwood southbound 8,517,553 39.8

I-5 Lynnwood northbound 7,733,702 53.5

SR 520 Seattle bridge eastbound 6,445,475 29.6

I-5 North King northbound 6,020,659 22.6

I-5 Tukwila northbound 5,997,528 42.5

I-90 Bridge westbound 5,310,825 57.3

SR 167 Renton northbound 4,980,431 28.0

SR 167 Renton southbound 4,582,608 58.3

I-5 Seattle North northbound 4,399,711 35.9

I-405 North northbound 4,327,382 56.4

I-405 South northbound 4,091,618 61.8

I-5 Tukwila southbound 3,863,679 45.1

I-5 Everett northbound 3,838,909 33.0

I-405 Bellevue northbound 3,773,393 52.0

I-90 Bridge eastbound 3,744,002 17.2

SR 520 Redmond eastbound 3,307,029 36.2

SR 167 Auburn southbound 3,305,901 59.9

I-90 Issaquah westbound 3,229,088 73.4

I-405 Eastgate southbound 2,861,851 64.8

I-405 South southbound 2,740,581 74.2

SR 167 Auburn northbound 2,167,614 73.0

I-90 Seattle eastbound 1,738,429 65.6

I-405 Eastgate northbound 1,715,306 64.4

I-90 Bellevue westbound 1,705,939 30.6

SR 520 Redmond westbound 1,399,767 19.7

I-5 Everett southbound 915,200 41.2

I-90 Bellevue eastbound 519,902 66.1

I-90 Seattle westbound 454,026 40.8

I-90 Issaquah eastbound 256,341 63.5
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was not expected at the outset of this analysis. It had been 
assumed that most of the delay without an observable cause 
was primarily due to too much traffic volume. The expecta-
tion was that highly congested locations, especially those with 
well-known geographic bottlenecks, would have the most 
delay with unspecified causes because the congestion would be 
caused by a combination of volume and roadway geometry– 
based capacity limitations. Test sections with lower levels of 
routine delay were expected to have higher percentages of 
delays with identified disruptions, as delay would exist on 
those road segments primarily when unusual events occurred.

Instead of simple volume and capacity issues being the pri-
mary cause of high levels of delay unrelated to observable 
disruptions, further analysis of the study corridors identified 
at least three major reasons for delay occurring without 
known disruptions being present:

1. Operating agencies simply do not record many of the dis-
ruptions that occur, especially on less congested corridors 
and during less congested periods (weekends, at night);

2. In several cases, the research team’s analytic approaches 
did not adequately track all of the disruptions that occurred, 
given the data available to indicate when and where those 
disruptions actually happened; and

3. Even on Seattle’s less congested urban freeway segments that 
do not have major geometric bottlenecks, volume is fre-
quently sufficient to cause at least modest amounts of delay.

When total delay values are small, these types of no-cause delays 
can represent a fairly high percentage of total annual delay.

These conclusions were supported by several case study 
examinations of the various study corridors. One case study 
was performed on the I-90 Issaquah eastbound section, 
which had the lowest measured annual delay of all 42 seg-
ments studied for this project. Only 256,000 vehicle hours of 
delay were measured in 2006, and 63.5% of that delay was not 
associated with an identified disruption. This roadway seg-
ment experienced two major delay-causing events in Novem-
ber 2006 that were not identified by the analysis methods 
described above. One of those events was a snow storm; the 
second was a major truck accident. A special analysis of the 
snow event determined that roughly 5.9% of all delay mea-
sured for the year for this section of roadway occurred during 
that event. Yet because the snow stopped falling (at least at the 
weather station from which data were obtained) several hours 
before congestion started on this freeway segment, the con-
gestion delays recorded were not associated with that weather 
phenomenon. A review of newspaper stories published the 
next morning confirmed that massive snow-related problems 
occurred that night on that roadway section. Additional dis-
cussion of the difficulty in analyzing snow-related delays is 
presented later in this report.

On a second day in November 2006, an accident involving 
a truck killed the driver of a passenger car on I-90. That acci-
dent was not listed in either the state accident database or the 
WSDOT WITS database. Newspaper accounts indicated that 
the crash occurred in the westbound lanes of I-90 at 10:38 a.m. 
west of Front Street, which is on the eastern end (but within 
the boundaries) of the I-90 Issaquah test section. Although 
the crash occurred in the direction opposite the I-90 Issaquah 
eastbound section examined in the case study, the eastbound 
section reported far longer delays than the westbound section 
after 10:30 a.m. The longer delay may have been due to the 
location of the crash, which likely caused much of the west-
bound queue to form east of the monitored portion of the 
roadway. In addition, the eastbound delays were likely pri-
marily rubbernecking delays, although some response equip-
ment may have been parked on the eastbound section of the 
roadway. The exact reasons are not clear, but it was clear from 
the database that travel times were significantly affected, as 
would be expected with an accident involving a truck and 
with the time and lane closures required to investigate a fatal 
accident. Although some delays on that day were associated 
with rain, the majority of delay was not associated with any 
disruption. Thus, another 5.1% of all annual delay (8.1% of 
delay not associated with a disruption) was erroneously attrib-
uted to no cause other than volume.

Consequently, for this roadway section, of the 63.5% of 
delay “not associated with a disruption,” 11% was actually 
associated with just two events, leaving at most 53% caused 
only by too much traffic volume.

Similar case study analyses of significant but unexplained 
delays were undertaken on road segments with greater con-
gestion. One of the most congested segments in the region is 
the westbound section of SR 520 as it crosses Lake Washing-
ton from Bellevue to Seattle. This segment experiences over 
50 times the annual delay experienced on the I-90 Issaquah 
section discussed above. The SR 520 bridge operates near or 
over capacity for 13 to 14 hours every weekday. It is parallel 
to another cross-lake bridge (the I-90 bridge, located to the 
south of SR 520), which is close enough so that motorists can 
easily divert between the two when one of them experiences 
heavy congestion.

Each August, a major hydroplane race takes place on Lake 
Washington south of the I-90 bridge. During the weekend of 
the race, the Navy’s Blue Angels flying team also performs an 
air show in between hydroplane race heats. The Blue Angels 
practice their routine during the day on the Thursday and 
Friday preceding the air show. During the times when the 
Blue Angels are practicing or performing their show, the I-90 
bridge is closed to traffic.

Not surprisingly, considerable delay occurs that week 
crossing the two bridges. Much of that delay is caused by the 
visual distraction of pleasure boats on the lake going to and 
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from the race course and by airplanes flying low overhead. In 
addition, because the I-90 bridge is closed to traffic during 
the Blue Angel flights, considerable traffic diverts to the SR 
520 bridge. All this activity results in the perfect storm for 
creating congestion on SR 520, much of which is not related 
to a specific disruption on SR 520. The disruption (as noted 
in VMS records) is on I-90.

In 2006, on the Thursday before the hydroplane races, 
westbound SR 520 did not experience any major disruptions 
(i.e., recorded construction, lane closures, crashes, or rain). 
However, it did experience 117,000 vehicle hours of delay 
(roughly half the total annual delay of the I-90 Issaquah east-
bound test section). About half of that delay was not associ-
ated with a disruption in the analysis database, and that value 
was over 2.5 times the usual noninfluenced Thursday delay. It 
is obvious from a manual review of the data that these delays 
were caused by excessive demand resulting from the 2-hour 
closure of the I-90 bridge combined with a high level of visual 
distraction for motorists crossing the lake. However, because 
the delays routinely experienced on this section of roadway 
are so high, this very bad day for travel on this section only 
contributed 0.9% of the total annual delay for this test sec-
tion, and thus the large not-influenced delay for that day was 
less than 0.5% of the annual total.

Taken together, these case studies illustrate that a large per-
centage of the congestion in the analysis data set without a 
cause can be traced back to some type of unusual occurrence. 
However, because of limitations in both the analysis data set 
and the methodology used to associate delays with specific 
events, this analysis was unable to reliably identify all these 
congestion sources. Consequently, three conclusions were 
drawn from the above examples:

1. The statistics presented in this report should be assumed 
to be a very conservative estimate of the amount of delay 
caused by the various types of disruptions;

2. The percentage of delay caused by any given factor can be 
a misleading statistic about the importance of that factor, 
since it is highly correlated to the total amount of delay on 
a given roadway; and

3. In the presence of moderately heavy volumes, a large 
number of factors that are not tracked by operating agen-
cies may be the cause of congestion.

Effects of Weather

The case study of delays on I-90 when snow fell illustrates the 
difficulties in determining the effects of weather on roadway 
performance. The largest roadway performance effects caused 
by the snowfall did not occur while the snow was falling at the 
weather station. Instead, they occurred as a result of snow 
accumulation on the roadway and the conversion of that 

snow into sheet ice on some roadway sections. The latter of 
these events took place well after the snow had stopped falling 
at the weather station.

In addition, the analysis of that case study reveals that 
delays did not happen similarly on all roadway sections that 
evening (although the newspaper reported long delays on 
several corridors). In fact, the eastbound and westbound sec-
tions of I-90 (presumed to experience the same level of snow-
fall) experienced very different roadway performance (delay) 
conditions during and after the snow storm. While the west-
bound direction showed modest delays in the evening, with 
moderate delays occurring between 6:00 and 9:00 p.m., the 
eastbound section experienced an unusually heavy day of 
congestion before the snowfall, and then a major additional 
pulse of congestion starting at 8:00 p.m. and lasting well into 
the morning hours. Exacerbating the eastbound congestion 
was the traffic volume added because of a professional foot-
ball game that occurred that night in downtown Seattle. The 
Seahawks played the Packers on Monday Night football, add-
ing 65,000 fans, divided across multiple freeways, to the out-
bound traffic beginning at about 8:30 p.m.

Methodology

The snowfall case study revealed a number of the analytic 
problems associated with an analysis of the effects of bad 
weather. The first major problem is defining, in analytic 
terms, bad weather. As discussed previously, the key region-
wide weather variable used to indicate bad weather was 
whether measurable rain had fallen in the past hour. This 
variable was then used as an independent variable to predict 
the probability that any given roadway section was operating 
in a given regime (essentially, level of service).

The analysis computed the probability that a given test sec-
tion of roadway was operating in each regime for each time 
slice of a day. These probabilities were computed for days when 
rain occurred within the past hour and were then compared 
with probabilities on days when the same roadway was dry at 
that same time of day. The mean, median, 80th percentile, and 
95th percentile travel times for each corridor and time period 
also could be computed for wet and dry conditions.

One limitation with the travel time analysis is best explained 
with an example. Rain falls between 3:00 and 4:00 p.m. The 
time periods between 3:00 and 5:00 p.m. are assumed to be 
rain affected (within 1 hour of when measurable rain has 
fallen). Travel times occurring at 4:55 p.m. that day are rain 
affected, but travel times at 5:05 p.m. are considered dry trips. 
The limitation with this analysis is that the rain may have cre-
ated a queue that affects the 5:05 p.m. dry trip. For the analy-
sis results in the discussion below, such a possibility was 
ignored, thus slightly underestimating the potential impacts 
of rain on travel time.
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Sensitivity tests were performed with various definitions of 
rain (e.g., requiring different fractions of an inch of rain fall-
ing within the previous hour for the pavement to be consid-
ered wet) and with different time periods within which rain 
had to have fallen (e.g., within the past hour or 2, 4, or 8 hours 
for the pavement to be considered wet) to test how sensitive 
the results were, given different definitions of wet. In general, 
any measurable rain falling within the past hour had the 
greatest effect on congestion formation and the resulting 
travel time. Other values showed slightly lower effects.

The effects of wind on roadway performance were ana-
lyzed differently from the effects of rain. This is partly because, 
other than the lasting effects of any queues being formed, 
wind does not have a lasting effect similar to that of rain. 
Once wind stops, its direct effects stop. That is, wind does not 
have a lasting effect equivalent to spray from wet roadways 
caused by rain. The lack of this effect also limited the team’s 
confidence in the use of the available NOAA wind data for 
specific roadway sections.

As a consequence, the wind gust variable produced by 
NOAA was not used. The project team had little confidence 
that this variable was effectively applicable to geographically 
removed locations. Similarly, the wind speed variable that 
was used was assumed to be only a reasonable surrogate for 
windy conditions, and not a definitive statistic indicating the 
precise wind speed at which travel might be affected.

To test the effects of wind on travel times, the data set was 
divided into wind-affected and not-wind-affected groups on 
the basis of the wind speed variable present in each 5-minute 
time slice. The travel times for these two groups were then 
compared within specific time intervals with both traditional 
t-tests, which assumed normally distributed travel times 
within those time periods, and nonparametric tests of the 
sample means. Tests were performed only for nonholiday 
Tuesdays, Wednesdays, and Thursdays (combined).

Sensitivity tests were performed with different values of 
the wind speed variable to determine the sensitivity of the 
analysis results to the breakpoint selected for identifying 
windy versus not-windy conditions. The performance of dif-
ferent roadway corridors was found to be sensitive to differ-
ent wind speeds. The authors believe that this is due in part 
to differences between actual wind speeds within the study 
corridor and those measured at the airport, and in part to the 
way that site-specific roadway geometry affects how drivers 
respond to wind. For example, travel times over the SR 520 
floating bridge, which has narrow lanes, no shoulders, and 
physically moves when struck by wind-blown waves, are 
affected at much lower wind speeds than travel times on I-5 
in the northern reaches of the metropolitan region, where 
lanes are wider, full-width shoulders exist, and wind does not 
cause the roadway to move. In the end, sustained wind speeds 
of 16 mph were used as the primary split between windy and 

not-windy conditions. Adopting a different definition would 
marginally change the travel times associated with windy and 
not-windy conditions for some corridors but would not 
change the ultimate conclusions of the study.

Results

Not surprisingly, the results uniformly showed that the occur-
rence of rain led to a statistically significant increase in the 
amount of congestion, but only during periods of moderately 
high traffic volume. That is, rain does not cause congestion 
uniformly throughout the day. The probability of congestion 
forming as a result of rain is a function of the underlying level 
of vehicular demand. And given the time series nature of traf-
fic flow, time of day and day of week can be used as surrogates 
for vehicular demand when estimating the probability of 
congestion forming.

Rain causes the roadway to operate just a little less effi-
ciently than it would otherwise (2, pp. 1–14; 3, pp. 8–18). The 
result, as observed in the data set, is that given a normal com-
mute period, the roadway is likely to break down a little ear-
lier than it would otherwise under conditions of similar 
demand on dry roadways. The amount of rainfall likely deter-
mines the degree to which roadway efficiency declines, but an 
analysis confirming this was not completed for this study. 
Because the roadway breaks down earlier than it would if rain 
had not occurred, the queues grow larger than they otherwise 
would, and consequently last longer. The moderate rate at 
which rain falls in Seattle (or more accurately, the region’s 
frequently wet roadways) does not cause congestion; it simply 
lowers the amount of traffic volume that a given roadway can 
handle before it becomes congested. Therefore, the roadway 
breaks down earlier in the commute period than it would 
otherwise.

Figure 5.3 illustrates this trend for SR 520 Seattle west-
bound crossing the Lake Washington floating bridge. The 
gray line shows the probability of a traveler experiencing con-
gestion on this corridor on a dry day. The black line illustrates 
the probability of being in congestion if rain has fallen within 
the past hour. SR 520 westbound into Seattle is one of the 
more congested roadway segments in the region. It experi-
ences congestion during both the a.m. and p.m. peaks, as well 
as periodically in the middle of the day.

Figure 5.4 shows one of the less congested roadway sec-
tions in the region. In this case, only the a.m. peak period 
routinely experiences congestion. Therefore, in the morning 
when volumes are high, if rain falls, the probability of conges-
tion forming in the next hour increases. However, after the 
peak period ends, the fact that rain has fallen has no discern-
ible impact on the formation of congestion. Yes, falling rain 
may increase accident rates during off-peak times (see the 
discussion below on accident rates and the presence of rain), 
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but congestion caused by that increase in accident rates is no 
more likely to occur than congestion from other sources.

The greater probability of congestion early in the peak 
period and the longer queues that result from that early start 
to congestion also mean longer travel times on rainy days.

Figure 5.5 illustrates how mean travel times increase along 
with the increased probability of being in congestion. This 
graphic shows the probability of congestion having formed 
by time of day when the roadway is dry (gray line) or has been 
rained on in the past hour (black line). It also shows the 

change in mean travel time when rain has fallen (dashed 
line), where the travel time increase is shown on the right-
hand axis. As Figure 5.5 shows, at no time does the mean 
travel time decrease with statistical significance when rain is 
present. Interestingly, this figure also shows that the declining 
volumes at the end of the commute period quickly moderate 
the travel time effects of the congestion developed as a result 
of early queue formation in the rain. That is, even though the 
queues are longer and the travel times worse in the peak 
period, the mean travel time for a trip starting at the end of 

Figure 5.3. Probability of being in congestion: rain versus no rain on  
SR 520 westbound from Bellevue to Seattle.

Figure 5.4. Probability of being in congestion: rain versus no rain on  
I-90 westbound from Issaquah to Bellevue.
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the commute period is only marginally worse than normal, 
and by the end of the peak period, travel times are nearly the 
same as normal, regardless of whether rain has fallen.

While the effects shown in Figure 5.5 were observed fairly 
universally for all roadway segments studied, further analysis 
of the 42 study segments revealed two significant differences 
in the effects of rain between less congested and more con-
gested roadway segments. First, on the more congested seg-
ments, enough volume exists during the middle of the day 
that rain causes an increased likelihood of congestion form-
ing during midday periods. On less congested roadway seg-
ments this is not the case. The project team believes that on 
road segments that operate near capacity during midday, the 
decreasing roadway efficiency caused by wet pavement is 
sufficient to create congestion, regardless of increases in 
crash rates caused by the wet pavement. Additional analysis 
is required to determine the effects of the increased acci-
dent rates versus the simple effect of wet pavements. On less 
heavi ly traveled (and thus less congested) roadway segments, 
the modest loss of efficiency caused by wet pavement does 
not create conditions that result in congestion, except on rare 
occasions when major crashes occur.

The second significant difference between heavily con-
gested and less heavily congested roadway segments is that on 
the most congested segments, the probability of congestion 
during the heart of the peak period approaches 100%. As a 
result, rain does not increase the probability of congestion 
forming during those periods. On less congested roadways, 
there are lower-volume commute periods (e.g., the workdays 

near major holidays) when congestion may not form. Rainfall 
on those lower-volume work days may decrease roadway per-
formance to a degree sufficient for congestion to form.

Figure 5.5 illustrates the effects of rain on a moderately 
congested roadway segment (there are no uncongested free-
way segments in the Seattle region). Figure 5.6 illustrates how 
rain affects a heavily congested segment. In this figure, it is 
easy to see that the probability that congestion will form does 
not change significantly during the core of the p.m. peak 
period. However, during the early portion of the p.m. peak, 
travel times do increase when rain falls. This is because queues 
form earlier than normal and are, therefore, longer than nor-
mal at later points in the day. Interestingly, in Figure 5.6 the 
travel time increases in the rain are briefly moderated just 
after the midpoint of the p.m. peak period. The increases  
in travel time caused by rain approach zero shortly before 
6:00 p.m. (18 on the x-axis of the graph), only to rebound by 
6:30 p.m. This outcome does not represent a lack of effect 
from the rain on commute times. Instead, it is an artifact of 
the roadway segmentation used for this specific analysis. On 
this particular roadway segment, the normal queue extends 
roughly to the end of the roadway analysis segment at the 
peak of the p.m. peak period. This maximum queue length 
occurs at roughly 6:00 p.m. Because the section already is 
fully congested, estimated travel times for the segment do not 
increase on the study section when it rains, and thus travel 
times do not increase. Instead, travel times increase on the 
upstream section of the roadway (in this case the SR 520 Red-
mond westbound study section) because the queue from the 

Figure 5.5. Correspondence of increase in mean travel times with 
increase in probability of congestion due to rain on I-90 westbound  
from Issaquah.
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first section has extended back onto the second section. Thus, 
travelers do experience slower trip times, but the reported 
travel time on this section is not worse. As the extra-long 
queue moderates toward the end of the peak period, travel 
times on the Seattle test section again increase, simply because 
the normal queue is once again shorter than the length of the 
entire roadway section.

Research (and most drivers’ personal experience) has shown 
that high winds frequently cause motorists to drive more 
slowly and carefully, as wind can affect vehicle handling. Under 
high winds, many drivers slow slightly (4; 5, pp. 24–30). As 
with rain, this more cautious approach to driving under 
heavy wind conditions can negatively affect the relationship 
of vehicle volume and speed, causing the roadway to operate 
less efficiently. Given high enough traffic volumes, this loss of 
efficiency results in congestion, although under normal cir-
cumstances it would not form. Under these conditions, wind 
will result in statistically significant increases in travel time.

An analysis of roadway performance and wind data in the 
Seattle region supported these basic findings. However, the 
analytic tests performed on the Seattle test corridors showed 
that travel times in all test corridors were not equally affected 
by wind. In fact, in many corridors, wind did not have any 
statistically significant effect on travel times. In other corri-
dors, wind had a very high impact on roadway performance. 
Table 5.6 gives examples of how wind affected various corri-
dors differently, even though the corridors are directly con-
nected. Table 5.6 also gives examples of the results of the 

sensitivity tests performed with different wind speeds to sep-
arate windy from not-windy conditions.

As can be seen in Table 5.6, the SR 520 bridge is affected by 
relatively moderate winds (10 mph sustained wind speeds). 
The bridge is a 2-mile-long floating span with a roadway two 
lanes in each direction with no shoulders. In even moderate 
wind, a driver can feel the bridge sway. The wind also can cre-
ate some spray when wind-driven waves break against the 
bridge, causing drivers to slow down. Because the bridge 
operates near capacity 12 to 14 hours each weekday, these 
wind effects are sufficient to cause congestion.

The I-90 bridge, located nearby to the south, also is affected 
by wind, but to a lesser extent than the SR 520 bridge. This is 
most likely due to a combination of factors: the I-90 bridge is 
more modern, has full shoulders, and sits higher off the water 
(and, therefore, experiences less wind-driven spray). Interest-
ingly, the evening commute across the I-90 bridge is affected 
by wind but the morning commute is not, even though traffic 
volumes are similar in both periods. This difference is partly 
because the test section that included the I-90 bridge also 
included a large segment of nonbridge travel across Mercer 
Island. Backups on the bridge affecting eastbound traffic 
actually create some free-flow conditions on the island itself, 
decreasing the travel time impact of the wind. However, 
wind-caused backups significantly affect the upstream sec-
tion of eastbound I-90 (the Seattle section is also shown in 
Table 5.6). This explains why the I-90 Seattle section is statis-
tically affected by wind in the morning, even though it does 

Figure 5.6. Correspondence of increase in mean travel times with increase 
in probability of congestion due to rain on SR 520 westbound, Bellevue 
toward Seattle.
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not include the bridge itself. At more moderate wind speeds 
(e.g., 10 mph sustained winds), none of the I-90 segments 
show a statistically significant change in expected travel time.

Looking at the I-5 segments included in Table 5.6, it can be 
seen that wind affects some corridors in some peak periods, 
but not all corridors or all peak periods within all corridors. 
In general, high peak period volumes relative to capacity 
make roadway segments more likely to be affected by high 
winds. Other reasons that a roadway may be susceptible to 
winds are that the road segment is exposed to high levels  
of wind (e.g., the I-5 North Seattle segment crosses the Ship 
Canal Bridge, an exposed portion of road where wind is often 
felt) or that the segment is immediately upstream of another 
segment that is wind affected. The I-5 North King segment is 
upstream of the I-5 North Seattle segment. The I-5 Everett 
segment is considerably farther north and does not experi-
ence spillback from North King or North Seattle segments, 
except in very extreme cases.

Figure 5.7 illustrates how wind affects the SR 520 bridge 
westbound, and Figure 5.8 illustrates the I-90 eastbound 
bridge section. In both figures, it can be seen that the primary 
effects of wind are in the peak periods when traffic volumes 
are highest. If the same graphic were presented with a higher 
wind speed, more impacts would be seen in the middle of the 
day, especially on SR 520.

In Figure 5.8, wind appears to have a significant effect on 
expected travel times during the later portion of the a.m. peak 
period, but not on the earlier portion of the peak. This helps 

explain why the difference in mean travel times shown in 
Table 5.6 is not statistically significant.

Given Seattle’s relatively benign climate, it can be said that 
most weather impacts in the Seattle region are small, at least 
in terms of the changes in vehicle speed and throughput that 
they directly cause. During most parts of the day, on most 
roadway segments, the travel time changes that these small 
differences in speed create are not statistically significant. 
However, when those small changes occur in combination 
with large traffic volumes, especially during the beginning 
shoulder of a peak period, those small changes can result in 
congestion that will, in turn, generate much more significant 
increases in expected travel times.

The use of rain variables that account for the continuing 
presence of spray from wet roadways suggests that spray has as 
much of an impact on roadway performance as moderate rain-
fall itself. Similarly, except in the case of heavy snowfall (when 
low visibility affects drivers’ behavior), the major impacts of 
snow are the result of snow accumulation, not the snowfall 
itself. Anecdotal evidence of this same effect also was apparent 
for ice formation in Seattle. The project team attempted to com-
pute times when black ice formation might be present by using 
humidity and temperature data from the Sea-Tac weather sta-
tion. However, these factors did not result in successful identifi-
cation of ice formation in the informal tests conducted during 
the winter of 2008. Therefore, the team concluded that using 
regional weather station data is not an effective way to accu-
rately determine the presence of snow and ice on roadways.

Table 5.6. Example Effects of Wind on Travel Times by Corridor

Route

Mean Travel Time

A.M. Peak P.M. Peak

With 
Winda (s)

Without 
Wind (s) Difference (s)

Statistically 
Significant?

With 
Wind (s)

Without 
Wind (s) Difference (s)

Statistically 
Significant?

I-5 Everett southbound 190 207 -17 No 191 209 -18 No

I-5 North King southbound 759 690 68 Yes 400 422 -22 No

I-5 North Seattle southbound 751 606 145 Yes 926 686 239 Yes

I-5 South northbound 1,671 1,073 598 Yes 649 649 0 No

SR 520 Seattle westbound 1,020 638 382 Yes 1,548 1,052 495 Yes

I-90 Bridge Eastbound 425 410 15 No 543 437 106 Yes

I-90 Seattle eastbound 198 169 29 Yes 151 115 36 Yes

SR 520 Seattle westbound, 
10 mph wind speed

781 626 154 Yes 1,093 1,049 44 Yes

I-90 Bridge eastbound,  
10 mph wind speed

434 407 27 No 431 441 -10 No

I-90 Seattle eastbound,  
10 mph wind speed

174 169 5 No 107 118 -12 No

a Sustained wind speed is greater than 16 mph.
b Sustained wind speed is less than or equal to 16 mph.
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The effects of wind are similar to those of rain. High winds 
cause motorists to drive more cautiously. The degree to which 
they adjust their behavior for a given wind condition is a 
function of the roadway section: How wide are the lanes? Are 
there shoulders? How exposed is the roadway section to 
wind? This in turn reduces the functional capacity of the 
roadway during high-wind conditions. These effects do not 

appear to be as uniform as the effects of rain, since geographic 
differences in terrain and geometric differences in roadway 
right-of-way appear to play bigger roles in determining the 
effects of wind on roadway performance than they do in the 
case of rain.

When wind is significant and traffic volumes are light, 
travel times increase only marginally, in direct proportion to 

Figure 5.7. Mean travel times by time of day in wind and no-wind conditions 
on SR 520 westbound, Bellevue toward Seattle.

Figure 5.8. Mean travel times by time of day in wind and no-wind  
conditions on I-90 bridge section eastbound, Seattle toward Bellevue.
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the slowing that individual vehicles exhibit under windy con-
ditions. However, when volumes are high, the reduced func-
tional roadway capacity resulting from motorists’ voluntary 
slowing can create congestion that would not occur under aver-
age weather conditions. That congestion frequently becomes 
self-sustaining during peak periods; that is, the queue itself 
creates a further decrease in functional roadway capacity, 
which further increases the length of the queue and increases 
travel times on the roadway section.

In summary, the analysis of the impacts of bad weather on 
congestion formation on Seattle freeways identified the fol-
lowing major conclusions:

•	 Small disruptions, such as those caused by moderate amounts 
of rain or even spray from wet pavements, only cause con-
gestion when they occur in combination with sufficient 
volume relative to the available capacity;

•	 Precipitation can affect roadway performance as long as 
the roadway remains wet;

•	 The probability that bad weather will significantly affect 
roadway performance on any given roadway section is a 
function of the expected demand and capacity condition 
of that road section and the significance of the weather 
event (e.g., light rain versus a heavy thundershower); and

•	 Bad weather also increases the probability of crashes 
occurring, which further increases the probability of sig-
nificantly increased travel times.

Effects of Incidents and Crashes

The effects of crashes and other kinds of traffic disruptions 
are of significant interest both because they are common 
causes of travel delay and because they are disruptions over 
which operating agencies have some level of control. That is, 
highway agencies cannot prevent rain, but they can design 
roadways to minimize the number and severity of crashes, 
and they can respond effectively and efficiently to crashes to 
limit their duration. Consequently, the project team looked at 
the effects of both crashes and noncrash incidents.

Incidents and crashes differ from weather in three signifi-
cant ways. First, incidents and crashes are highly correlated 
with traffic volume, while weather is not. More crashes occur 
when volumes increase, but increasing volumes do not affect 
rainfall. Therefore, crashes and incidents are not evenly dis-
tributed over time, but bad weather (at least in Seattle) is 
much more evenly distributed throughout the day.

Second, incidents and crashes have small footprints in 
comparison to weather. A crash or incident occurs at a spe-
cific location, which has a relatively small geographic scope 
(this does not include any queues that may form), but the 
same weather generally occurs over a larger geographic area. 
This small footprint can have considerable impact on 

segment-based analysis procedures. This impact is discussed 
below in the subsection on methodology.

Finally, crashes and incidents are, in many ways, even more 
variable than weather. Incidents can be anything from minor 
debris in the roadway (e.g., pieces of a blown truck tire), to a 
distraction on the side of the road (e.g., a stalled car), to a fatal 
crash.

Methodology

Considerable research has been conducted to explore the 
impacts of incidents on roadway performance, especially in 
terms of vehicle throughput, queue formation, and roadway 
recovery at the incident scene. Much of this work has involved 
the use of queuing theory to explore the size and speed of 
queue formation, given incoming and exiting traffic volumes, 
along with descriptors of specific incidents (duration, num-
ber of lanes closed). The intended result of most of these 
efforts has been to determine the benefits that can be gained 
from improvements in incident response efforts.

One limitation in these studies has been the fact that once 
queues form during peak periods, the queue itself can become 
its own self-sustaining bottleneck. Thus, even after the inci-
dent has been cleared, the back of the queue may become the 
point at which congestion forms, effectively replacing the 
incident scene that started the congestion. A second limita-
tion is that a bottleneck at one point of a roadway segment 
has implications on the performance of the rest of that road-
way segment, as well as the segments upstream and down-
stream from that segment.

Consequently, this project used two approaches to examine 
the larger, corridor-long effects of incidents and crashes. The 
first approach examined the travel times that occur under 
incident or crash conditions. This analysis took advantage of 
influence variables (these are discussed above and in Appen-
dix A). As described, the influence of every crash and incident 
was noted in the 5-minute travel time records for each road-
way test segment. It was possible, for any definition of disrup-
tion, to segregate the travel time records for a given test section 
into two groups: those influenced by a specific type of disrup-
tion and those not influenced by that type of disruption.

Statistical tests could then be performed on those two 
groups. Because of the time series nature of travel times, 
combined with the time-lagged nature of the effects of inci-
dents, these statistical comparisons were somewhat complex. 
That is, traffic conditions at 7:00 a.m. on a Monday are differ-
ent than those at 8:00 a.m. for that same stretch of road, so 
travel times at these two times should not be directly com-
pared. Similarly, a crash that happens at 7:00 a.m. has a differ-
ent effect on travel time at 7:05 a.m. than it has at 7:15 a.m. 
Because disruptions happen at different times during the day, 
the aggregated effects of these disruptions are complex.
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The primary statistical test used to compare influenced and 
noninfluenced travel times was an independent sample t-test. 
The majority of tests involved only data for Tuesdays, Wednes-
days, and Thursdays to limit the effects that variations in day-
of-week traffic volumes would have on the statistical results. 
This test was originally applied independently for each 5-min-
ute period. That is, influenced travel time data for the 7:00 to 
7:05 a.m. period for all Tuesdays through Thursdays were 
compared with noninfluenced travel times for that one period. 
Because each 5-minute time period occurred on a different 
day, each sample was truly independent of all other samples; 
that is, the 7:00 a.m. travel time today has no influence on the 
7:00 a.m. travel time tomorrow. Because travel times were 
taken from only one 5-minute period, the time-dependent 
effects of travel also were removed.

The difficulty with this approach is that it required per-
forming 288 statistical tests to examine the daily differences in 
incident-influenced and noninfluenced travel times. To reduce 
the analytic load, the project team grouped the 5-minute 
average travel times by 30-minute increments, with the statis-
tical tests performed for each 30-minute interval.

In this approach, the six 5-minute travel times were treated 
as independent travel time estimates within that 30-minute 
period. For example, assume that no incident happens on a 
study corridor on March 7 until the 7:15 a.m. period. That 
incident influences the rest of the morning commute. The 
average 5-minute travel times stored in the 7:00, 7:05, and 
7:10 a.m. analysis time periods are reported as not incident 
influenced. All three 5-minute average travel times are 
included in the computation of the travel time distribution 
for the not incident–influenced 30-minute period covering 
7:00 to 7:29 a.m., and the three 5-minute periods from 7:15 
to 7:25 a.m. are included in the influenced travel time distri-
bution for that same 7:00 to 7:29 a.m. period.

There were two advantages to the 30-minute approach. 
One was the reduction in the number of statistical tests that 
had to be performed and summarized. The second was the 
increase in the sample size for each test. The downside of the 
30-minute test was that the six travel times were no longer 
truly independent samples, as the 7:05 a.m. travel time would 
be highly correlated to the 7:00 a.m. travel time.

When the results of tests conducted with both levels of 
aggregation were analyzed, little difference was found 
between the statistical outcomes of the 5- and 30-minute 
comparisons, so most analysis results in this report are pre-
sented in the 30-minute format to make the results more 
readable. When the results of the 5- and 30-minute analyses 
were compared, the most significant differences were found 
in the shoulders of the peak period. These differences did not 
change any of the basic conclusions of this report.

Statistical comparisons between influenced and noninflu-
enced travel times were made in a number of ways. Various 

comparisons were possible because of the multiple ways that 
influence was calculated in the project database. Influence 
was examined for crashes (only crashes reported in the state 
accident records), for incidents (any incident reported by 
WSDOT’s service patrol), for any incident reported by WITS 
that involved lane closures, or for any one of these types of 
disruptions. Travel times associated with these disruptions 
could then be compared with either all other travel times or 
only travel times when no disruption influenced travel.

This flexibility allowed a very thorough comparison of 
incident-influenced conditions. In most cases, the best com-
parison was with no known disruption currently influencing 
conditions, but in some cases it was important to make a 
comparison with all other travel times (e.g., comparing travel 
times when crashes had influenced travel versus noncrash-
influenced travel).

In most cases, nonholiday Tuesday through Thursday 
travel times were used as the population for which travel 
times were compared. Some analyses also were performed for 
weekends and for all weekdays combined. Although these 
analyses were useful for describing total delay in a year caused 
by a specific type of disruption, they were not as useful in 
describing the effects of disruptions on travel times compared 
with normal conditions. Therefore, most results presented in 
this report involve Tuesday through Thursday (nonholiday) 
comparisons.

One difficulty with these comparisons is that they were 
not measures of what would have happened if the disrup-
tion had not taken place. They were simply comparisons of 
the expected conditions when a specific type of disruption 
occurred versus expected conditions when those types of 
events had not taken place. The research team hoped that by 
combining an entire year’s worth of data, the number of 
events included in the database would limit the biases in 
travel time impacts that could be associated with specific 
incidents occurring at specific times and locations. To make 
a direct comparison of actual conditions versus what would 
have happened would require a carefully calibrated microscale 
simulation model. Such an effort was well beyond the scope 
of this project.

Because they are not direct measures of what would have 
happened, the resulting graphs and computed statistics must 
be used carefully. They describe the differences in expected 
conditions if a specific type of event has occurred and its influ-
ences are still being felt. That second clause is important. One 
problem with not using a simulation to make this comparison 
is answering the question, when does the influence of an event 
end? The travel time comparisons assumed that the effects of 
any disruption ended once conditions returned to what they 
were at the time the disruption took place, not the condition 
that would normally be present at that time. This definition 
was selected because a review of the project data set found 
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many cases in which predisruption travel times were much 
faster than normal; when the disruption occurred, travel times 
slowed, but they never degraded to the point of normal con-
ditions. Moreover, travel times returned to the faster-than-
normal conditions that existed before the disruption. If 
normal travel times had been used as the measure of influ-
ence, these events would have had no influence. But they obvi-
ously caused delay. As a result, the definition of influence was 
based on travel times returning to preexisting conditions.

A second limitation with the corridor-based analysis process 
described above was caused by the site-specific nature of crash 
and incident impacts relative to the roadway segmentation 

used for the analysis. The disadvantage of using travel times 
is that travel time is a function of selected segment end points, 
and those defined segments may or may not include all 
the effects (e.g., slow-moving vehicles) caused by a given 
incident. Figures 5.9 through 5.11 illustrate this problem. 
Taken together, they show how the location of a crash or inci-
dent within a corridor can influence how effectively the mea-
sured travel times in a test section reflect the delays caused 
by that crash or incident.

In Figure 5.9, the crash occurs near the downstream end of 
the roadway segment. In this case, travel times measured in the 
corridor capture all the delays occurring in the test section, 

Figure 5.9. Illustration of a crash at the downstream end of  
a test corridor.

Figure 5.10. Illustration of a crash in the middle of a test corridor.

Figure 5.11. Illustration of a crash at the upstream end of a test 
corridor.
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unless the queue is longer than the test section. This situation 
did happen on the test sections, but given the 2-mile mini-
mum length of those test sections, it was unusual.

In Figure 5.10, the crash occurs in the middle of the test 
section. In this case, if the queue is minor, the entire queue 
and the travel time influences of that queue are contained in 
the test corridor. However, if the queue is long, it will extend 
back into the upstream roadway segment, creating delays on 
that segment that are not explained by an incident or crash 
within that segment. Thus, the study segment that contains 
the crash will see some, but not all, of the delays associated with 
the crash, while the upstream segment will see unexplained 
congestion.

In Figure 5.11, the crash occurs near the upstream end of 
the study segment. In this case, the study segment will not 
experience the majority of the delays caused by the crash. 
Those delays will occur on the test section upstream of the 
study section. The study section is likely to show good travel 
times because in this study, travel times are based on multiple-
point speed measurements, and the queues at the upstream 
end will allow the majority of the study segment to operate in 
a free-flow condition.

The moderately long roadway segments and the careful 
selection of the breakpoints between those segments in this 
study limited the frequency with which congestion crossed 
segment boundaries, but there were still many occasions 
when this happened. The travel time analyses presented in the 
following section do not effectively account for these cross-
segment boundary occurrences. When they occurred, the 
slower travel times these extended queues caused were associ-
ated with normal (or nonincident) conditions. As a result, the 
comparisons between incident-influenced and nonincident-
influenced conditions described below should be considered 
conservative measures of the effects of incidents on travel 
times and travel time reliability, as many off-segment effects 
of crashes and incidents were not accounted for.

Although they are useful in describing the effects that dif-
ferent types of disruptions have on travel time, the definition 
of influence described above and the statistical travel time 
comparison based on that definition have significant explan-
atory limitations. In particular, analysis using this definition 
of influence does not do a good job of answering questions 
such as, “What impact does a crash have on my commute?” 
The different times and locations of such a disruption will 
result in different outcomes, and it cannot be known when 
the individual asking that question makes his trip. Conse-
quently, a second type of analysis was performed that exam-
ined changes in congestion from a different perspective.

In this second set of analyses, the study team defined when 
congestion ends at the end of both the a.m. and p.m. peak 
periods. The idea came from two observations noted in the 
development of the influence variables: (a) once congestion 

starts (often as a result of a disruption) during the peak 
period, that congestion tends to last until the end of the peak; 
and (b) although the previously described analysis can predict 
how much longer a given trip will last once a disruption has 
occurred, it does not estimate how long the congestion effect 
will last. Determining how much longer congestion lasts would 
provide insight into that missing piece of information.

To perform the required analysis, end of congestion was 
defined as the time when 20 consecutive minutes (four 
5-minute periods) of travel time were less than travel time at 
the speed limit plus 5%. The 20-minute interval was selected 
to account for modest fluctuations in travel times (vehicle 
speeds) caused by unstable traffic flow occurring as conges-
tion eases. The 5% value was selected as a result of sensitivity 
tests; while it represents a fairly small increase in travel time, 
it does appear to identify the effects of modest congestion 
that occur at a single location within a longer corridor.

Once the end of congestion was identified for each peak 
period for each day, three sets of travel time statistics were 
computed for all nonholiday Tuesdays, Wednesdays, and 
Thursdays describing the time that congestion ended for days 
when (a) any crash occurred (the crash must have occurred 
after 4:00 a.m. for the morning peak period test or after 
3:00 p.m. for the evening peak period test), (b) any noncrash 
incident occurred, or (c) no incident occurred. Only one end 
of congestion time was assigned for each peak period for each 
day; that is, the first time period that met the selected criteria 
was the end of congestion for that peak period. Occasionally 
disruptions of one type occurred after congestion ended, cre-
ating a second congestion period within the traditional hours 
associated with the peak period. These cases were treated as 
occurring after the peak period had ended. These statistics 
were compared by using both normal and nonparametric 
statistical tests to determine the extent to which crashes and 
other types of traffic disruptions can be expected to extend 
peak period congestion.

A problem arose in that the definition for end of congestion 
proved too strict for some segments. The mean time when the 
a.m. peak period congestion ended was well after noon on 11 
test sections, and frequently it did not end until after 6:00 p.m. 
on these corridors. A review of the travel times routinely expe-
rienced on these routes showed that a variety of traffic flow 
conditions (e.g., excessive merging at bottlenecks near the end 
of the corridor, large volumes of heavy trucks) frequently kept 
these road segments operating slightly below the speed limit 
even during late morning and midday periods. These routes 
all operated at or above the speed limit during late-night hours 
and during many midday hours. But they routinely operated 
at speeds lower than the speed limit during the middle of the 
day for reasons other than traffic disruptions.

This normal condition limited the benefit of the intended 
analysis. As a result, for the a.m. peak period on these 11 routes, 
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end of congestion was redefined as being sustained speeds 
within either 10% or 20% of the speed limit, depending on the 
corridor. The intent of this new, corridor-specific definition 
was simply to allow better examination of how crashes and 
other disruptions affect when slow travel associated with peak 
period volumes ends.

These lowered expectations were tested on other corridors 
and for other periods. The results were generally not good. 
Using lowered average travel speeds to define end of peak 
period congestion frequently caused the end of congestion 
flag to be set during obviously congested conditions on these 
other routes. This was particularly true in the afternoon peak 
period, when all routes reached travel times within 5% of that 
achieved at the speed limit by a reasonable time of day. Con-
sequently, the slower speed that was required to allow this 
approach was used only for those 11 roadway segments and 
only for the a.m. peak period.

Results: Travel Time Effects of  
Incidents and Crashes

In general, the effects of crashes and incidents on travel times 
were similar to each other and to the expected travel times 
that resulted from rainfall. That is, the shape of the expected 
(mean) travel time patterns by time of day when incidents 
and crashes occurred was similar in shape to the expected 
travel times when rain fell. These similarities are illustrated in 
Figures 5.12 through 5.14.

Figures 5.12 through 5.14 illustrate the mean travel time 
for nonholiday Tuesdays, Wednesdays, and Thursdays for all 

of 2006 (a) under nonrain conditions (regardless of incident 
conditions), (b) when rain had fallen within the past hour 
(regardless of incident conditions), (c) when a crash on the 
study section was influencing traffic conditions, and (d) when 
any traffic incident was reported as occurring on the study 
section by WSDOT’s service patrols. Thus, the four expected 
travel time conditions are not fully independent of each 
other. But each gives an excellent understanding of expected 
conditions. For example, the rain travel time line answers the 
traveler’s question, “How long should I expect my commute 
trip to last on this corridor if it is raining?” The response 
includes days when crashes occur and others when they do 
not occur. Note that during any given period the crash and 
incident travel time curves drop to zero when there were no 
reported crashes or incidents.

As the curves show, when free-flow conditions are the rou-
tine condition, incidents and rain have little effect on mean 
travel times. In some cases, crashes create sufficient disrup-
tion that travel times increase in lower-volume periods.

In the figures, the relative size of the travel time changes 
measured during incident and crash conditions (e.g., com-
pared with the no-rain condition) is not consistent from cor-
ridor to corridor. These differences are caused by a variety of 
factors, including differences in (a) the sizes of the incidents 
and crashes occurring on each study segment during 2006, 
(b) the locations of the incidents and crashes relative to the 
end points of each study segment, and (c) the volume-to-
capacity ratio occurring on the study section at the time of 
the traffic disruption. Perhaps even more importantly, the 
travel time statistics do not account for off-segment traffic 

Figure 5.12. Mean travel times under rain, crash, or noncrash traffic  
incident conditions on I-5 northbound, South corridor.
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disruptions. That is, case studies of a number of specific days 
in 2006 showed that congestion on one roadway segment can 
frequently grow to the point that it affects the upstream road 
segment. While roadway segment boundaries can be chosen 
to minimize the effects of known geometric bottlenecks, 
major traffic disruptions often create temporary bottlenecks 
that are not located at known bottleneck locations. The con-
gestion on study segments caused by these off-segment events 

increased the noninfluenced travel times against which study 
outcomes were compared.

The combined result of these various factors is that the 
relative importance of any specific type of traffic disruption 
varies from study segment to study segment.

In the northbound I-5 South segment (Figure 5.12), rain 
had a more substantial effect on the a.m. peak period travel 
times than did crashes. Late at night (midnight to 2:00 a.m.), 

Figure 5.13. Mean travel times under rain, crash, or noncrash traffic 
incident conditions on I-5 southbound, Lynnwood corridor.

Figure 5.14. Mean travel times under rain, crash, or noncrash traffic 
incident conditions on I-5 southbound, North Seattle corridor.
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the disruption imposed on the traffic stream. Therefore, 
crashes frequently have more significant effects during times 
of lower volume. But during peak conditions, the simple cre-
ation of congestion, which can occur given a much smaller 
disruption, may be as significant as the size of the disruption 
itself. That is, once the roadway congests, a large disruption 
adds only a marginal increase to the delay, whereas a smaller 
disruption occurring before congestion forms can create an 
even larger change in expected travel times during the course 
of the peak period because of the growth of the queue associ-
ated with the initial congestion point.

Results: Effects of Crashes or Noncrash Incidents 
on Peak Period Travel Time and Travel Reliability

The previous section illustrates that traffic volumes during 
Seattle’s peak periods are sufficient on many corridors to cre-
ate congestion, and that congestion may result in a variety of 
travel times. When the effects of disruptions were added to 
those traffic volumes, travel times generally increased, as 
illustrated in Figures 5.12 through 5.14. When computing 
incident-influenced travel times, only incidents that had a 
still-active effect on roadway performance were considered 
(still active means that travel times in the test section were 
slower than measured when the disruption was actually in 
place). One difficulty with this approach is that it is hard to 
explain. It also does not generalize well.

For a different approach to looking at the effects of traffic 
disruptions on travel times, this study computed the expected 
mean, 80th percentile, and 95th percentile peak period travel 
times for each study corridor, accounting for whether a dis-
ruption (crash or noncrash reported incident) had taken 
place. This approach basically answers the traveler’s question, 
“If a crash (or other noncrash disruption) occurs today, how 
much worse will my commute be?”

To analytically answer this question, each nonholiday 
Tuesday through Thursday, 5-minute travel time was placed 
in one of three categories: (a) not influenced, (b) influenced 
by a crash, or (c) influenced by a reported noncrash incident. 
Once a disruption had occurred during a peak period, all 
remaining 5-minute travel times for the rest of that peak 
period were assumed to be influenced by that event. The a.m. 
peak was assumed to occur between 6:30 and 9:30 a.m. Any 
disruption that occurred after 4:00 a.m. was included in the 
analysis. The p.m. peak was assumed to occur between 3:00 
and 7:00 p.m. Only traffic disruptions that occurred after 
2:00 p.m. were included in the analysis. If a crash occurred at 
5:00 p.m., the 5-minute travel times before 5:00 p.m. were 
classified as noninfluenced, and those after 5:00 p.m. were 
crash influenced. If both a crash and a noncrash incident 
occurred, all time periods after the crash were considered 
crash influenced. Because the mean, 80th percentile, and 95th 

incidents were seen to have a significant impact. A review of 
these data indicated that the incidents in question occurred 
during a planned construction lane closure, resulting in a large 
roadway capacity reduction during that maintenance activity, 
with substantial congestion being the result. In the middle of 
the afternoon and during the p.m. peak period (when the 
northbound I-5 South corridor operates in the reverse of the 
peak direction and is, therefore, not usually congested), crashes 
were the primary causes of travel time delays.

The Lynnwood corridor (Figure 5.13) presented the most 
normal effects of both weather and traffic disruptions. No 
late-night congestion is apparent in the figure, although some 
late-evening delays (~9:00 p.m.) are evident as a result of 
vehicle crashes. In the a.m. peak period, rain had the greatest 
effect in terms of increasing expected travel times. Both rain 
and vehicle crashes tended to cause travel delays slightly ear-
lier in the a.m. peak period than did incidents, which tracked 
more closely to the normal peak period travel times until 
almost the peak of the a.m. travel time curve, when the effects 
of incidents caused substantial additional travel time. In the 
p.m. peak period (again, on this corridor the p.m. peak is a 
reverse-direction commute), only modest increases in travel 
times due to rain, incidents, or crashes occurred, with crashes 
having the most significant impact.

On the North Seattle southbound corridor (Figure 5.14), 
travel times routinely degrade in both peak periods. This cor-
ridor differed from the other two examples in that crashes 
had a more significant impact on mean travel time in the a.m. 
peak than did rain. This is partly due to the fact that this 
corridor ends in two back-to-back C-class weaving sections 
that constitute both a major routine bottleneck and a high-
accident location. The result is that most of the causes of 
congestion in this section occurred within this section. Con-
gestion spillback from downstream roadway segments on 
rainy days was not as significant a factor on this section as it 
was on the Lynnwood section. Consequently, crashes were 
more often a factor, especially in the morning.

A comparison of the three figures indicates that Figure 5.14 
shows more off-peak congestion than Figures 5.12 and 5.13. 
The southbound I-5 North Seattle roadway corridor carries 
considerable traffic volume relative to the roadway’s capacity 
even in off-peak periods. This large traffic volume frequently 
results in moderate southbound congestion, even in the mid-
dle of the day. As a result, relatively minor traffic incidents or 
bad weather can start with a moderate situation in the middle 
of the day and make it considerably worse. In contrast, Fig-
ures 5.12 and 5.13 show that traffic disruptions have relatively 
little impact on midday and evening roadway performance 
on the other example roadway segments.

Thus, the impacts of any disruption are a function of the 
underlying traffic volume condition during which that dis-
ruption occurs. The next most important factor is the size of 
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percentile travel times were computed from the entire pool of 
travel times within each classification of trips, this approach 
did create a minor bias toward lower travel times in the nonin-
fluenced category, as a disproportionate number of travel times 
for that category were taken from the early (least congested) 
portion of the peak periods. This bias was somewhat balanced 

by the inability of this analysis to account for the effects of con-
gestion spillback from one roadway segment to another.

The results of this analysis are shown in Table 5.7, which 
describes the impacts of crashes and noncrash incidents on 
the mean travel times computed for the a.m. peak period. For 
each study corridor, the mean travel time increase (in seconds) 

Table 5.7. Effects of Incidents and Crashes on A.M. Peak Period  
Travel Times

Study Corridor

A.M. Peak 
Travel Rate Mean Travel 

Time Increase 
from All Traffic 

Incidents (s)

Increase over Nonincident 
Conditions (%)

Mean Median
Noncrash 
Incident Crash

I-405 Kennydale northbound 3.66 3.4 179 11 17

I-405 North southbound 2.82 2.4 347 35 45

I-5 North King southbound 2.07 1.8 139 22 43

I-5 Seattle CBD northbound 1.91 1.8 361 51 57

I-405 Kirkland southbound 1.76 1.8 80 9 14

SR 520 Seattle eastbound 1.70 1.8 98 13 32

I-5 Lynnwood southbound 1.89 1.6 251 31 60

I-5 South northbound 1.75 1.6 364 43 58

SR 167 Auburn northbound 1.68 1.6 21 8 15

I-405 Eastgate northbound 1.66 1.6 17 8 24

I-5 Seattle North southbound 2.15 1.4 232 47 84

I-405 Kennydale southbound 1.54 1.4 96 15 34

I-405 South southbound 1.45 1.4 50 28 14

SR 167 Renton northbound 1.62 1.2 390 75 76

SR 520 Seattle westbound 1.51 1.2 183 30 19

I-5 Tukwila northbound 1.50 1.2 254 57 76

I-90 Issaquah westbound 1.46 1.2 169 29 60

I-90 Bellevue westbound 1.30 1.2 73 24 22

I-405 Bellevue northbound 1.27 1.2 39 12 27

I-405 South northbound 1.24 1.2 30 19 15

I-90 Seattle eastbound 1.96 1 50 27 36

I-90 Seattle westbound 1.20 1 20 21 27

I-90 Bridge Eastbound 1.18 1 40 9 38

I-405 Bellevue southbound 1.16 1 25 11 62

I-5 Everett southbound 1.15 1 39 20 90

I-90 Bridge westbound 1.15 1 40 11 22

I-5 Seattle CBD southbound 1.10 1 48 9 24

SR 167 Auburn southbound 1.06 1 -2 -1 -6

I-405 Eastgate southbound 1.05 1 9 7 76

(continued on next page)
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caused by noncrash traffic incidents is presented. This increase 
is then shown as a percentage change in study section travel 
time in comparison with the mean travel time with no disrup-
tion. The percentage increase in travel time associated with a 
crash is shown to illustrate the relative significance of crashes 
and noncrash traffic disruptions. The 42 study segments are 
sorted from most congested to least congested on the basis of 
their median and mean travel rates for all weekdays.

As Table 5.7 shows, the mean travel time increased when 
traffic disruptions occurred for all corridor study segments 
that had a mean travel rate greater than 1.0. (A travel rate 
equal to 1.0 indicates that vehicles can operate at the speed 
limit [60 mph].) For all but four of those corridors, the occur-
rence of a crash had a greater impact on expected travel times 
than a reported noncrash incident. A more mixed effect of 
both crashes and noncrash incidents is evident for corridors 
that did not routinely exhibit at least a modest level of con-
gestion. No direct correlation is observable between the 
delays that occurred in response to traffic incidents and either 
the mean or median travel rates.

The p.m. peak period version of Table 5.7 is shown in 
Table 5.8. As with the a.m. peak results, all the p.m. corridors 
with a median travel rate greater than 1.0 showed increases 
in mean travel time when any kind of traffic disruption 
occurred. Crashes resulted in a greater increase in the mean 
travel time than noncrash incidents on all but four of the 
study corridors. Because p.m. peak travel is different from 

a.m. peak travel, the corridors in Table 5.8 do not match 
those in Table 5.7.

Other than the basic, if obvious, conclusion that traffic dis-
ruptions can be expected to increase travel times for moder-
ately to heavily congested travel corridors, there are relatively 
few patterns in the data contained in Tables 5.7 and 5.8. There 
appears to be no consistent relationship between the percent-
age change in travel time and the base statistics that describe 
mean peak period travel conditions (either mean travel rate or 
median travel rate). On some heavily congested corridors (e.g., 
I-405 Bellevue southbound p.m. peak, I-5 North Seattle south-
bound p.m. peak, I-5 South northbound a.m. peak), crashes 
and other incidents caused dramatic increases in expected 
travel times, even doubling the expected time to traverse the 
study section. On other heavily congested corridors (e.g., I-405 
Eastgate southbound p.m. peak, I-405 Kennydale northbound 
a.m. peak), the travel time effects were considerably smaller, in 
the range of a 10% to 25% increase in expected travel times.

When looked at more comprehensively, noncrash inci-
dents increased travel times an average of 17% in the morn-
ing and 21% in the evening on corridors that had mean peak 
period travel rates above 1.10. However, mean travel time 
changes ranged from 9% to 75% in the morning. In the eve-
ning, travel times changes ranged from 6% to 119%. If only 
crashes are considered, the a.m. peak changes ranged from 
14% to 90%, with an average of 40%. The p.m. changes ranged 
from 9% to 176%, with an average of 41%.

SR 167 Renton southbound 1.04 1 -1 0 -6

I-5 Tukwila southbound 1.02 1 14 3 -2

SR 520 Redmond westbound 1.02 1 29 8 7

I-405 North northbound 1.02 1 8 2 4

I-5 Everett northbound 1.01 1 5 3 51

I-5 Lynnwood northbound 1.01 1 16 3 52

I-5 Seattle North northbound 1.01 1 3 1 0

I-90 Bellevue eastbound 1.01 1 -1 -1 0

I-5 South southbound 1.00 1 23 4 3

I-405 Kirkland northbound 1.00 1 7 1 1

SR 520 Redmond eastbound 1.00 1 1 0 0

I-90 Issaquah eastbound 1.00 1 -1 0 0

I-5 North King northbound 1.00 1 1 0 0

Table 5.7. Effects of Incidents and Crashes on A.M. Peak Period  
Travel Times (continued)

Study Corridor

A.M. Peak 
Travel Rate Mean Travel 

Time Increase 
from All Traffic 

Incidents (s)

Increase over Nonincident 
Conditions (%)

Mean Median
Noncrash 
Incident Crash
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Study Corridor

P.M. Peak  
Travel Rate Mean Travel 

Time Increase 
from All Traffic 

Incidents (s)

Increase over Nonincident 
Conditions (%)

Mean Median
Noncrash 
Incident Crash

I-405 Bellevue southbound 3.73 3.6 400 88 102

I-405 Eastgate southbound 2.73 2.6 29 10 25

SR 520 Seattle westbound 2.72 2.6 230 23 18

I-405 South northbound 2.58 2.6 47 17 14

I-5 Seattle North southbound 2.56 2 410 119 138

I-405 Kirkland northbound 1.99 2 127 14 26

I-5 Seattle CBD northbound 1.96 1.8 350 52 60

I-405 Kennydale southbound 1.90 1.8 109 15 23

I-5 North King northbound 1.79 1.8 92 17 24

I-5 Seattle CBD southbound 1.72 1.8 153 22 30

SR 167 Auburn southbound 1.96 1.6 90 29 33

SR 520 Redmond eastbound 1.87 1.6 83 14 34

I-5 South southbound 1.76 1.6 265 30 46

I-405 North northbound 1.61 1.6 37 6 29

I-5 Everett northbound 1.87 1.4 128 50 55

I-5 Seattle North northbound 1.74 1.4 73 18 29

SR 167 Renton southbound 1.63 1.4 180 31 57

I-405 South southbound 1.52 1.4 79 43 26

I-90 Bridge westbound 1.73 1.2 122 25 12

SR 520 Seattle eastbound 1.49 1.2 115 20 34

I-5 Lynnwood northbound 1.38 1.2 101 17 45

I-405 Bellevue northbound 1.34 1.2 89 35 68

I-90 Seattle westbound 1.13 1.2 7 8 9

SR 520 Redmond westbound 1.49 1 168 38 40

I-90 Seattle eastbound 1.43 1 84 72 54

I-90 Bridge eastbound 1.40 1 111 27 35

I-5 North King southbound 1.33 1 232 67 176

I-90 Bellevue westbound 1.30 1 154 63 96

I-5 Tukwila southbound 1.19 1 102 22 66

SR 167 Renton northbound 1.17 1 151 37 40

I-405 Kennydale northbound 1.17 1 84 17 56

I-90 Bellevue eastbound 1.11 1 48 19 50

I-5 Everett southbound 1.10 1 16 8 63

I-5 Lynnwood southbound 1.10 1 59 11 44

I-405 North southbound 1.09 1 64 16 37

I-405 Kirkland southbound 1.09 1 101 19 27

I-5 Tukwila northbound 1.07 1 96 24 81

SR 167 Auburn northbound 1.05 1 13 6 16

I-405 Eastgate northbound 1.04 1 19 16 18

I-90 Issaquah eastbound 1.01 1 0 0 -1

I-5 South northbound 1.01 1 14 2 6

I-90 Issaquah westbound 1.00 1 17 4 5
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A review of base data for a sample of these corridors sug-
gested that two factors contributed to this variation. In some 
cases, the noninfluenced annual mean travel time was signifi-
cantly affected by downstream congestion when that down-
stream congestion was caused both by routine conditions and 
by traffic disruptions on the downstream roadway segments. 
The result of this downstream congestion backing up on the 
study section was that an abnormally high mean travel time for 
nondisruption-influenced travel times occurred on the study 
section. This result, in turn, decreased both the absolute and 
percentage differences in crash-influenced travel times.

The second factor was simply the number and variety of 
incidents or crashes occurring in the different test sections. 
Some traffic disruptions were more significant in terms of the 
number of lanes they blocked and the time at which they 
occurred. A modest number of very bad traffic disruptions 
can cause a fairly high increase in the mean travel time because 
of the modest number of data points in each sample.

To further explore the effects of incidents and crashes on 
travel time reliability, Tables 5.9 and 5.10 describe the mea-
sured changes in the 80th and 95th percentile travel times 
when crashes and noncrash incidents occur. Similar to Tables 

Table 5.9. Effects of Crashes and Noncrash Incidents on A.M. Peak Period  
80th and 95th Percentile Travel Times

Study Corridor

Mean A.M. 
Peak Travel 

Rate

Increase in Travel Time (%)

Noncrash Incident Crash

80th 
Percentile

95th 
Percentile

80th 
Percentile

95th 
Percentile

I-405 Kennydale northbound 3.66 6.3 10.9 9.4 8.2

I-405 North southbound 2.82 -6.4 9.6 2.1 13.5

I-5 North King southbound 2.07 0.0 -5.3 16.8 25.8

I-5 Seattle CBD northbound 1.91 15.4 17.1 40.5 35.4

I-405 Kirkland southbound 1.76 -2.2 -4.6 1.1 2.3

SR 520 Seattle eastbound 1.70 5.6 12.0 20.5 52.5

I-5 Lynnwood southbound 1.89 -16.0 -15.4 9.5 15.0

I-5 South northbound 1.75 -18.6 -16.8 -6.1 -0.1

SR 167 Auburn northbound 1.68 2.3 7.5 18.3 37.9

I-405 Eastgate northbound 1.66 5.5 6.7 6.8 30.9

I-5 Seattle North southbound 2.15 2.5 -0.1 31.3 24.7

I-405 Kennydale southbound 1.54 -1.7 10.1 21.7 27.8

I-405 South southbound 1.45 2.7 20.3 -0.5 17.0

SR 167 Renton northbound 1.62 -4.2 -14.7 84.8 61.8

SR 520 Seattle westbound 1.51 -0.2 -4.1 17.9 12.7

I-5 Tukwila northbound 1.50 -5.4 -13.4 16.8 12.3

I-90 Issaquah westbound 1.46 21.0 0.5 28.3 36.2

I-90 Bellevue westbound 1.30 -0.5 30.2 12.6 10.8

I-405 Bellevue northbound 1.27 18.5 23.9 33.4 35.2

I-405 South northbound 1.24 0.6 -0.5 2.7 9.7

I-90 Seattle eastbound 1.96 -2.1 -9.7 23.3 45.8

I-90 Seattle westbound 1.20 9.2 -5.9 35.0 11.8

I-90 Bridge eastbound 1.18 34.1 12.7 51.2 41.5

I-405 Bellevue southbound 1.16 0.3 -5.1 93.2 114.6

I-5 Everett southbound 1.15 -2.6 -29.2 4.1 17.6

(continued on next page)
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I-90 Bridge westbound 1.15 0.0 -1.0 56.2 162.0

I-5 Seattle CBD southbound 1.10 1.8 -1.3 13.0 28.6

SR 167 Auburn southbound 1.06 2.7 8.8 No crashes a.m. peak

I-405 Eastgate southbound 1.05 0.3 -0.1 6.5 76.5

SR 167 Renton southbound 1.04 2.5 1.3 0.8 0.1

I-5 Tukwila southbound 1.02 0.0 -0.4 0.4 0.4

SR 520 Redmond westbound 1.02 0.6 12.7 29.3 76.6

I-405 North northbound 1.02 -0.2 1.1 1.2 6.2

I-5 Everett northbound 1.01 -0.1 -0.1 1.2 38.4

I-5 Lynnwood northbound 1.01 0.1 0.1 0.6 195.6

I-5 Seattle North northbound 1.01 2.3 2.9 5.9 5.3

I-90 Bellevue eastbound 1.01 0.0 0.9 0.0 0.7

I-5 South southbound 1.00 0.0 0.0 0.0 19.6

I-405 Kirkland northbound 1.00 0.2 2.4 0.2 0.2

SR 520 Redmond eastbound 1.00 -10.5 -14.9 -9.3 -16.5

I-90 Issaquah eastbound 1.00 0.0 0.0 0.0 0.0

I-5 North King northbound 1.00 0.0 0.0 0.0 0.0

Table 5.9. Effects of Crashes and Noncrash Incidents on A.M. Peak Period  
80th and 95th Percentile Travel Times (continued)

Study Corridor

Mean A.M. 
Peak Travel 

Rate

Increase in Travel Time (%)

Noncrash Incident Crash

80th 
Percentile

95th 
Percentile

80th 
Percentile

95th 
Percentile

Table 5.10. Effects of Crashes and Noncrash Incidents on P.M. Peak Period  
80th and 95th Percentile Travel Times

Study Corridor

Mean P.M. 
Peak Travel 

Rate

Increase in Travel Time (%)

Noncrash Incident Crash

80th 
Percentile

95th 
Percentile

80th 
Percentile

95th 
Percentile

I-405 Bellevue southbound 3.73 9.8 -3.4 10.4 0.3

I-405 Eastgate southbound 2.73 3.0 -5.8 6.4 27.3

SR 520 Seattle westbound 2.72 21.4 4.1 25.7 1.7

I-405 South northbound 2.58 12.4 7.8 7.0 8.4

I-5 Seattle North southbound 2.56 5.2 1.3 21.8 14.9

I-405 Kirkland northbound 1.99 4.6 3.6 18.7 27.6

I-5 Seattle CBD northbound 1.96 29.5 26.0 52.4 30.8

I-405 Kennydale southbound 1.90 -11.6 9.0 -6.4 -0.1

I-5 North King northbound 1.79 12.6 10.9 11.3 17.1

(continued on next page)
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I-5 Seattle CBD southbound 1.72 2.4 -3.1 5.2 12.7

SR 167 Auburn southbound 1.96 0.6 22.5 29.4 11.2

SR 520 Redmond eastbound 1.87 -10.5 -14.9 -9.3 -16.5

I-5 South southbound 1.76 10.3 9.8 16.8 34.9

I-405 North northbound 1.61 8.4 30.5 27.4 59.5

I-5 Everett northbound 1.87 -6.8 -0.2 -3.4 2.5

I-5 Seattle North northbound 1.74 9.4 11.4 18.3 0.1

SR 167 Renton southbound 1.63 15.9 16.3 48.2 67.7

I-405 South southbound 1.52 5.1 6.9 7.8 22.6

I-90 Bridge westbound 1.73 48.8 29.6 47.5 13.4

SR 520 Seattle eastbound 1.49 24.4 21.3 32.1 42.9

I-5 Lynnwood northbound 1.38 12.8 2.4 43.1 60.9

I-405 Bellevue northbound 1.34 7.3 -8.0 54.5 68.1

I-90 Seattle westbound 1.13 0.6 7.7 1.7 9.5

SR 520 Redmond westbound 1.49 169.2 23.4 171.8 50.9

I-90 Seattle eastbound 1.43 25.9 -31.4 33.4 13.2

I-90 Bridge eastbound 1.40 51.3 15.4 83.5 21.5

I-5 North King southbound 1.33 9.9 86.8 151.5 114.6

I-90 Bellevue westbound 1.30 494.3 244.6 213.0 107.2

I-5 Tukwila southbound 1.19 8.4 7.9 48.6 18.0

SR 167 Renton northbound 1.17 6.3 23.1 26.3 44.4

I-405 Kennydale northbound 1.17 7.1 -3.9 40.4 98.1

I-90 Bellevue eastbound 1.11 3.2 -0.2 19.0 419.0

I-5 Everett southbound 1.10 5.9 8.6 57.5 149.3

I-5 Lynnwood southbound 1.10 -0.4 -7.2 20.6 41.3

I-405 North southbound 1.09 0.3 45.0 58.1 41.6

I-405 Kirkland southbound 1.09 6.6 19.3 20.9 29.1

I-5 Tukwila northbound 1.07 2.1 -6.7 113.7 146.3

SR 167 Auburn northbound 1.05 5.4 139.6 61.0 58.6

I-405 Eastgate northbound 1.04 -2.0 -6.8 26.7 142.6

I-90 Issaquah eastbound 1.01 1.2 1.0 0.1 -6.0

I-5 South northbound 1.01 -0.2 -0.1 4.7 77.8

I-90 Issaquah westbound 1.00 0.1 3.5 -0.4 -0.5

Table 5.10. Effects of Crashes and Noncrash Incidents on P.M. Peak Period  
80th and 95th Percentile Travel Times (continued)

Study Corridor

Mean P.M. 
Peak Travel 

Rate

Increase in Travel Time (%)

Noncrash Incident Crash

80th 
Percentile

95th 
Percentile

80th 
Percentile

95th 
Percentile
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5.7 and 5.8, these two tables are sorted from most congested 
to least congested study corridor. Table 5.9 presents the 
changes to a.m. peak period travel times, and Table 5.10 pre-
sents the p.m. peak period results.

As the tables show, in most cases, crashes had a greater 
impact than noncrash traffic incidents in both the a.m. and 
p.m. peak periods. In addition, the least congested corridors 
in both peak periods generally showed the least change in the 
measured 80th and 95th percentile travel times when crashes 
and other traffic incidents occurred.

The most significant difference was that all corridors with 
median peak period travel rates for all weekdays above 1.0  
or mean weekday travel rates above 1.10 showed an increase 
in mean travel times on days when either a crash or noncrash 
incident occurred. However, many corridors did not show 
increased 80th or 95th percentile travel times under those 
same incident conditions, especially for noncrash incidents. 
The effects of noncrash incidents were particularly mixed. 
Eleven of 27 corridors in the a.m. peak period and four of 34 
corridors in the p.m. peak period did not have increased 80th 
percentile travel times due to noncrash incidents. Only two 
corridors in the morning and three corridors in the afternoon 
among these moderately to heavily congested corridors had 
peak periods in which the 80th percentile travel times did not 
increase under crash conditions. Similarly, 15 of these corri-
dors in the morning and 10 of them in the afternoon did not 
show an increased 95th percentile travel time. Only one corri-
dor in the a.m. peak and two in the p.m. peak had 95th percen-
tile travel times that did not increase when crashes occurred. 
In all cases, several additional corridors showed only mar-
ginal changes in these statistics.

If the results for the corridors with average weekday mean 
travel rates above 1.10 are simply averaged, then

•	 Noncrash incidents increase the 80th percentile travel 
times only 2% in the a.m. peak and 29% in the p.m. peak;

•	 Noncrash incidents increase the 95th percentile travel 
times only 1% in the a.m. peak and 16% in the p.m. peak;

•	 Crashes increase the 80th percentile travel times 24% in 
the a.m. peak and 39% in the p.m. peak; and

•	 Crashes increase the 95th percentile travel times 33% in 
the a.m. peak and 47% in the p.m. peak.

Taken together, these results indicate that noncrash incidents 
were mostly responsible for modest changes in travel times. 
Those changes were more pronounced during periods of 
higher traffic volume and were thus generally more significant 
in the p.m. peak than in the a.m. peak. Noncrash incidents 
generally had very modest impacts on the worst travel days.

In contrast, crashes had more substantial impacts on both 
the a.m. and p.m. peak periods. The fact that an accident 
occurred could be expected to add 20% to 40% to the travel 

times in much of the travel time distribution curve, whether 
that was the mean, 80th percentile, or 95th percentile travel 
time, with some crashes being responsible for much larger 
increases.

Results: Incident-Related Changes  
in When Peak Period Congestion Ends

In Figures 5.12 through 5.14, only those travel times influ-
enced by an incident or crash were included in the computa-
tion of the mean travel time associated with incidents and 
crashes. The problem with this (or any) approach to defining 
the influence of disruptions on travel times is understanding 
when those influences end. That is, the definition of incident 
influence used in the previous section means that only inci-
dents that had a still-active effect on roadway performance 
were considered when computing incident-influenced travel 
time (where still active means that travel times in the test sec-
tion were slower than those measured when the disruption 
was occurring). If an incident is quickly cleared and the dis-
ruption is minimized, how does that event affect the travel 
time experienced?

To better understand the effects of incidents and crashes, 
an entirely different examination of the impacts of those dis-
ruptions is discussed below that examines when congestion, 
as part of the normal peak period increase in travel demand, 
can be expected to end. An examination of Figures 5.12 
through 5.14 shows that mean travel times slow earlier in the 
day and last longer into the day whenever traffic disruptions 
occur. From the motorists’ perspective, this means not only 
that their trip during the heart of the commute is longer, but 
that even if they have delayed their trip until after the normal 
peak period, they may still be stuck in congestion.

To examine this phenomenon, the project team computed 
when the a.m. and p.m. peak periods normally ended for each 
study corridor. The team then examined whether the ending 
time of the peak period changed as a result of the occurrence 
of crashes or noncrash incidents. The resulting summary sta-
tistics for these analyses are shown in Tables 5.11 and 5.12. 
(All the statistics generated from this analysis are shown in 
Appendix D.) The tables are sorted so that the study sections 
with the slowest, most congested corridors (as defined by 
their peak period median travel rate in minutes per mile) are 
at the top of the table, and the fastest, least congested corri-
dors are at the bottom. Within a given travel rate, routes are 
sorted by their mean travel rate. Both tables show the mean 
time of day when congestion ended on days that did not 
experience reported incidents or crashes, and the mean dif-
ference (in minutes) in the time of day for the end of conges-
tion for each corridor when at least one crash or incident was 
reported within the study section in the indicated direction 
of travel. If both a crash and a noncrash incident occurred, 



114 Table 5.11. Effects of Incidents and Crashes on Ending Time of  
P.M. Peak Period Congestion

Study Corridor

P.M. Peak  
Travel Rate Normal Time 

When 
Congestion 

Ended

Additional Congestion 
Time (min)

Mean Median
Noncrash 
Incident Crash

I-405 Bellevue southbound 3.73 3.6 19:44 0:00 0:20

I-405 Eastgate southbound 2.73 2.6 19:12 0:00 0:15

SR 520 Seattle westbound 2.72 2.6 20:00 0:00 0:12

I-405 South northbound 2.58 2.6 20:41 0:00 0:00

I-5 Seattle North southbound 2.56 2 18:49 0:00 0:31

I-405 Kirkland northbound 1.99 2 19:03 0:00 0:11

I-5 Seattle CBD northbound 1.96 1.8 18:53 0:00 0:00

I-405 Kennydale southbound 1.90 1.8 19:27 0:00 0:00

I-5 North King northbound 1.79 1.8 18:55 0:00 0:12

I-5 Seattle CBD southbound 1.72 1.8 18:20 0:00 0:00

SR 167 Auburn southbound 1.96 1.6 18:47 0:00 0:08

SR 520 Redmond eastbound 1.87 1.6 19:09 0:00 0:00

I-5 South southbound 1.76 1.6 18:08 0:00 0:00

I-405 North northbound 1.61 1.6 19:18 0:00 0:14

I-5 Everett northbound 1.87 1.4 17:08 0:28 0:58

I-5 Seattle North northbound 1.74 1.4 18:34 0:00 0:00

SR 167 Renton southbound 1.63 1.4 18:47 0:00 0:00

I-405 South southbound 1.52 1.4 19:36 0:00 0:00

I-90 Bridge westbound 1.73 1.2 18:25 0:34 0:48

SR 520 Seattle eastbound 1.49 1.2 18:52 0:00 0:22

I-5 Lynnwood northbound 1.38 1.2 19:00 0:00 0:00

I-405 Bellevue northbound 1.34 1.2 18:09 0:00 0:27

I-90 Seattle westbound 1.13 1.2 17:29 0:00 0:00

SR 520 Redmond westbound 1.49 1 16:51 1:24 1:53

I-90 Seattle eastbound 1.43 1 17:07 0:00 1:05

I-90 Bridge eastbound 1.40 1 18:18 0:22 0:35

I-5 North King southbound 1.33 1 16:47 0:29 1:57

I-90 Bellevue westbound 1.30 1 16:13 1:21 2:10

I-5 Tukwila southbound 1.19 1 17:18 0:21 0:51

SR 167 Renton northbound 1.17 1 17:22 0:27 0:57

I-405 Kennydale northbound 1.17 1 18:05 0:00 0:23

I-90 Bellevue eastbound 1.11 1 16:35 0:00 1:02

I-5 Everett southbound 1.10 1 16:35 0:24 0:57

I-5 Lynnwood southbound 1.10 1 17:21 0:00 1:09

I-405 North southbound 1.09 1 17:40 0:00 0:46

I-405 Kirkland southbound 1.09 1 16:55 1:00 1:21

I-5 Tukwila northbound 1.07 1 16:23 0:23 1:56

SR 167 Auburn northbound 1.05 1 17:31 0:00 0:00

I-405 Eastgate northbound 1.04 1 16:24 0:00 0:47

I-90 Issaquah eastbound 1.01 1 16:10 0:00 0:00

I-5 South northbound 1.01 1 16:05 0:00 0:45

I-90 Issaquah westbound 1.00 1 16:05 0:00 0:00
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Table 5.12. Effects of Incidents and Crashes on Ending Time of A.M. Peak Period Congestion

Study Corridor

A.M. Peak 
Travel Rate Normal Time 

When 
Congestion 

Ended

Additional Congestion 
Time (min)

Adjusted End of 
Congestion

Mean Median
Noncrash 
Incident Crash Travel Time Valuea

I-405 Kennydale northbound 3.66 3.4 11:47 0:00 1:33 10%

I-405 North southbound 2.82 2.4 9:56 1:27 2:09 NA

I-5 North King southbound 2.07 1.8 11:06 0:48 1:29 10%

I-5 Seattle CBD northbound 1.91 1.8 12:15 0:00 0:00 No disruption- 
free days

I-405 Kirkland southbound 1.76 1.8 10:16 0:56 1:14 NA

SR 520 Seattle eastbound 1.70 1.8 11:54 6:02 6:53 NA

I-5 Lynnwood southbound 1.89 1.6 10:06 1:57 1:39 NA

I-5 South northbound 1.75 1.6 9:16 0:00 0:22 NA

SR 167 Auburn northbound 1.68 1.6 11:40 0:00 0:00 20%

I-405 Eastgate northbound 1.66 1.6 11:38 0:00 1:04 10%

I-5 Seattle North southbound 2.15 1.4 9:38 0:00 4:58 NA

I-405 Kennydale southbound 1.54 1.4 9:08 1:19 1:23 20%

I-405 South southbound 1.45 1.4 12:46 3:12 2:17 20%

SR 167 Renton northbound 1.62 1.2 9:13 1:47 1:22 20%

SR 520 Seattle westbound 1.51 1.2 9:51 0:00 2:54 10%

I-5 Tukwila northbound 1.50 1.2 10:06 0:00 0:32 NA

I-90 Issaquah westbound 1.46 1.2 9:10 0:00 0:33 NA

I-90 Bellevue westbound 1.30 1.2 9:26 0:13 0:00 NA

I-405 Bellevue northbound 1.27 1.2 11:01 3:34 5:00 10%

I-405 South northbound 1.24 1.2 8:21 4:49 7:47 20%

I-90 Seattle eastbound 1.96 1 8:45 0:00 1:05 NA

I-90 Seattle westbound 1.20 1 7:35 0:42 1:52 NA

I-90 Bridge eastbound 1.18 1 9:23 0:45 1:04 NA

I-405 Bellevue southbound 1.16 1 8:27 7:56 11:07 10%

I-5 Everett southbound 1.15 1 7:08 0:00 1:06 NA

I-90 Bridge westbound 1.15 1 8:04 0:26 1:30 NA

I-5 Seattle CBD southbound 1.10 1 9:28 0:00 4:57 NA

SR 167 Auburn southbound 1.06 1 8:58 7:29 9:59 NA

I-405 Eastgate southbound 1.05 1 7:22 0:00 0:32 NA

SR 167 Renton southbound 1.04 1 9:42 7:33 7:30 NA

I-5 Tukwila southbound 1.02 1 7:08 0:00 7:51 NA

SR 520 Redmond westbound 1.02 1 7:09 0:56 2:10 NA

I-405 North northbound 1.02 1 7:56 0:12 1:47 NA

I-5 Everett northbound 1.01 1 7:05 0:00 0:14 NA

I-5 Lynnwood northbound 1.01 1 7:13 0:00 0:00 NA

I-5 Seattle North northbound 1.01 1 7:07 0:00 0:00 NA

(continued on next page)
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equal to the speed limit, the end of congestion time was 
extended when incidents occurred.

Several significant differences were observed between the 
effects of incidents and crashes in the morning peak period 
described in Table 5.12 and those shown for the evening peak 
period in Table 5.11. The most significant difference is that 
the heavily congested a.m. corridors are much more sensitive 
to incidents than their p.m. peak period counterparts. None 
of the 14 corridors with p.m. peak median travel rates above 
1.4 had congestion durations that showed sensitivity to non-
crash incidents, but five of the 10 morning peak corridors 
operating at this level of congestion were sensitive to non-
crash incidents. One corridor, I-5 Seattle CBD northbound, 
had so many disruptions that no comparison could be made. 
This study segment had only one day among all nonholiday 
Tuesdays, Wednesdays, and Thursdays in 2006 that did not 
contain either a crash or a WITS-reported incident. Clearly, 
one day is not sufficient to make a statistically significant 
comparison.

A second difference between the morning and evening 
periods was the size of the change when incidents and crashes 
affected the end of congestion. When incidents and crashes 
had an effect in the evening, the mean change in the duration 
of the peak period tended to be between 15 minutes and  
1 hour, at most (35 of 45 statistically significant differences 
were less than 1 hour). In contrast, morning peak period cor-
ridors affected by crashes and other incidents routinely saw 
congestion extend for more than an hour, and in many cases, 
multiple hours.

However, at the less congested end of the congestion distri-
bution, the morning peak period was similar to the evening 
peak period. More than half of the study corridors with a 

the day was classified as being affected by a crash. For the 
a.m. peak, the crash or incident must have taken place after 
4:00 a.m. and before the end of congestion was reached. For 
the p.m. peak, the crash or incident must have taken place 
after 3:00 p.m. and before the end of congestion was reached. 
Statistical comparisons were performed by using the non-
parametric Anderson–Darling k-sample test, with p-values of 
less than .01 being used to determine statistically significant 
end of congestion times. Statistically insignificant differences 
are set to zero in Tables 5.11 and 5.12.

While the nature (size, duration, and specific location) of 
incidents affects exactly how much disruption each incident 
causes, and these differences in incident size and duration are 
not directly accounted for, some generalizations can be made 
from these tables. Among these are the following:

•	 Incidents that occur in the evening peak period have little 
measurable effect on the time that peak period congestion 
abates for (a) very heavily congested roadway sections or 
(b) very lightly congested sections;

•	 Crashes extend the evening commute period’s congestion 
more significantly than noncrash incidents, and they are 
more likely to affect roadway performance than other 
kinds of incidents; and

•	 The duration of congestion on a surprising number of cor-
ridors is not significantly affected by a crash occurring on 
that section.

Of the 18 corridors with a median p.m. peak period travel 
rate of 1.4 or greater, the end of congestion was extended by 
noncrash incidents in a statistically significant manner for 
only one. For nine of 19 corridors with a median travel rate 

I-90 Bellevue eastbound 1.01 1 7:05 0:00 0:00 NA

I-5 South southbound 1.00 1 7:07 0:08 0:00 NA

I-405 Kirkland northbound 1.00 1 7:05 0:05 0:00 NA

SR 520 Redmond eastbound 1.00 1 7:05 0:00 0:00 NA

I-90 Issaquah eastbound 1.00 1 7:05 0:00 0:00 NA

I-5 North King northbound 1.00 1 7:05 0:00 0:00 NA

a On some study corridors, for the end of congestion to occur before noon after the a.m. peak period on days without incidents or 
crashes, it was necessary to change the definition of congestion from 20 consecutive minutes of average travel times being faster than 
1.05 times the travel time at the speed limit to either 1.10 times the travel times at the speed limit (indicated by the value of 10%) or 1.20 
times for travel time at the speed limit (indicated by 20%).

Table 5.12. Effects of Incidents and Crashes on Ending Time of  
A.M. Peak Period Congestion (continued)

Study Corridor

A.M. Peak 
Travel Rate Normal Time 

When 
Congestion 

Ended

Additional Congestion 
Time (min)

Adjusted End of 
Congestion

Mean Median
Noncrash 
Incident Crash Travel Time Valuea
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the normal operations of a roadway. This combination of 
supply and demand effects are generally categorized into the 
seven sources of congestion. These factors interact in the for-
mation of congestion, and the relative importance of any one 
of these factors varies from location to location.

In many rural areas, demand is routinely low relative to 
roadway capacity. Consequently, delay only happens when 
major disruptions occur, usually as a result of bad weather 
(e.g., snow), a major traffic incident, or reductions in roadway 
capacity due to road construction and maintenance activities.

In other rural areas, especially those that experience recre-
ational traffic flows, large and somewhat predictable surges of 
traffic demand create traffic congestion during times of peak 
demand. Similarly, in suburban and urban areas, traffic flows 
associated with work and other common activities often 
reach levels that typically push traffic demand beyond avail-
able roadway capacity, creating routine congestion. In both of 
these cases, a large percentage increase in congestion can 
occur on top of the existing base congestion as a result of a 
disruption in roadway operations, especially when that dis-
ruption occurs during times of high traffic volumes.

Lastly, in larger urban areas, traffic can routinely exceed 
roadway capacity for many hours each work day. In these 
areas, numerous roads operate near capacity for many addi-
tional hours of the day. Disruptions on these roads can add 
large amounts of delay, but that added delay may be only a 
modest percentage increase in total annual delay. In simple 
terms, routine congestion already may have slowed traffic, so 
that a fender-bender in the existing queue slows vehicles only 
a little more because they already are moving slowly.

The 42 directional roadway sections studied in this analysis 
all experienced at least some routine congestion in either the 
a.m. or p.m. peak periods. Many sections experienced routine 
congestion during only one of the peak periods, but a num-
ber of the sections experienced significant congestion in both 
peaks, as well as periodic congestion in the middle of the day.

Table 5.13 summarizes the amount of delay influenced by 
each type of disruption tracked in this study. Delay was cal-
culated for each 5-minute time interval of 2006 for each road-
way segment in units of vehicle seconds as follows:

delay actual travel time travel time at the= − speed limit
roadway segment volume

( )
( )�

The percentage of delay was computed by totaling all vehicle 
hours of delay in the region associated with each type of dis-
ruption, and then dividing by the sum of all measured delays. 
When more than one disruption occurred simultaneously, the 
resulting delay was credited to all of the associated causes. Thus 
the sum of the percentages in Table 5.13 exceeds 100%.

Taken at face value, this simple summary table supports 
the commonly heard statement that “incidents and crashes 
cause between 40% and 60% of all delay.” In reality, the 

median travel rate equal to the speed limit (1.0) had conges-
tion ending times that were not statistically affected by inci-
dents. The majority of these corridors also had a mean travel 
rate of less than 1.02 and were reasonably insensitive to con-
gestion caused by crashes. These results indicate that if traffic 
volume relative to capacity is low enough to not produce even 
light routine congestion, then only very large incidents and 
crashes will create congestion. These observed differences 
further strengthen the primary finding of this study: the 
overriding factor affecting travel time reliability is the back-
ground traffic volume.

Although there were many differences in the a.m. and p.m. 
peak periods, one of the key differences was that the morning 
leading (early) shoulder had very low traffic volumes. There-
fore, as noted earlier, incidents tended to have little impact 
early in the a.m. peak period. In the evening, traffic volume 
dropped off rapidly at the end of the peak period, and con-
gestion frequently abated rapidly simply because traffic vol-
umes were low enough for queues to clear. At the end of the 
morning peak, however, traffic volumes remained modest 
because of the addition of noncommute trips to the traffic 
stream. Thus, incident congestion formed during the a.m. 
peak tended to last much longer than incident congestion 
formed in the p.m. peak.

Conversely, significant incidents that occurred well before 
the start of the p.m. peak period had the potential to cause the 
entire p.m. peak period to be congested if they were not 
cleared quickly, but incidents occurring an hour before the 
start of the a.m. peak, if they were cleared with even modest 
speed, were far less likely to affect the morning commute.

Summary: Causes of Congestion

Congestion occurs when there is too much volume and too 
little roadway capacity. This can occur because

•	 Traffic demand is too great for the designed roadway 
capacity; or

•	 Some disruption reduces functional roadway capacity 
(supply) to levels below demand.

Demand varies because of repeating travel patterns (e.g., 
time of day, day of week, seasonal patterns) and as a result of 
unusual activity that causes more travelers than typical to use 
a roadway at a given time. These unusual activities can be 
planned events, such as a major sporting event, or unplanned 
events, such as vehicles diverting to one roadway to avoid 
congestion on another.

Functional roadway capacity (supply) can vary as a result 
of numerous factors, including weather, traffic management 
strategies (work zones, the application of different traffic 
control plans), and a variety of traffic incidents that disrupt 
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bad weather, and traffic volumes on travel times on I-5 north-
bound heading toward downtown Seattle. This graphic shows 
that congestion formed only as traffic volumes peaked. It 
also shows that the resulting congestion reduced observed 
throughput while increasing travel times. In addition, it 
illustrates how all types of disruptions to normal roadway 
performance (rain, crashes, noncrash incidents) caused 
congestion to start earlier and last longer during the peak 
period, while increasing travel times during the normally 
congested times.

Incidents and other disruptions also can cause congestion 
to form during times of the day that are normally free from 
congestion, but only when the disruption lowers functional 
capacity below traffic demand. Thus, as seen in Figure 5.15, 
minor disruptions such as rain or noncrash incidents on this 
section of I-5 did not cause congestion in the midday or the 
evening peak period (in the off-peak direction). For this four-
lane freeway section, enough unused capacity exists during 
those periods that modest disruptions to roadway capacity 
did not cause congestion, although some crashes caused suf-
ficient disruption to create congestion during these off-peak 
periods. Late at night, because construction activity was tak-
ing place along this roadway segment, even smaller incidents 
(combined with those construction lane closures) caused 
congestion to form.

Thus volume, relative to roadway capacity, is a key compo-
nent of congestion formation, and in urban areas it is likely 
to be the primary source of congestion. Disruptions then sig-
nificantly increase the delay that the basic volume condition 
creates.

amount of delay caused by incidents was actually less than 
that indicated in Table 5.13 because a considerable portion of 
the incident- and crash-associated delay was caused by large 
traffic volumes. There were numerous examples in the analy-
sis data set of significant crashes and other incidents that 
caused little or no congestion because of when they occurred. 
These examples showed that without sufficient volume, an 
incident causes no measurable change in delay.

Travel Time Impacts Caused by Disruptions

In the Seattle area, many incidents take place during peak 
periods, causing already existing congestion to grow worse. 
Figure 5.15 illustrates the interwoven effects of incidents, 

Table 5.13. Percentage of Delay  
by Type of Disruption Influencing 
Congestion Duration and Severity

Type of Disruption Delay (%)

Incidents 38.5

Crashes 19.5

Bad weather (rain) 17.7

Constructiona 1.2

No cause indicated (mostly volume) 42.2

a Construction delay was computed only when construction 
work actively took place along the roadway and did not 
include any delays caused because general roadway  
capacity was reduced as a result of temporarily narrowed  
or reconfigured lanes.

Figure 5.15. Effect of disruptions and traffic volume on travel time on I-5, 
northbound South section.
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a crash occurring during the a.m. peak period adds an average 
of 2 hours and 17 minutes to the duration of the morning’s 
peak period congestion. In the p.m. peak, a crash adds only 
adds 33 minutes to the time when congestion normally can 
be expected to clear. Similarly, a noncrash incident adds 
1 hour and 14 minutes to the morning peak, but in the p.m. 
only 10 minutes are added to the time that congestion can be 
expected to last.

As seen in Figure 5.15, travel times also generally increased 
within the peak period when disruptions occurred to normal 
freeway flow. If the peak period is held constant (6:30 to 9:30 
a.m. for the morning peak and 3:00 to 7:00 p.m. for the eve-
ning peak), average travel times during those periods 
increased when a crash or noncrash incident occurred on a 
roadway segment. Morning travel times increased by 17% in 
corridors that experienced even modest a.m. peak period 
congestion when noncrash incidents occurred. Noncrash 
incidents increased p.m. travel times an average of 21% on 
corridors that experienced any routine increase in p.m. peak 
travel. In both the a.m. and p.m. peaks, crashes added roughly 
40% to the expected travel times.

These effects varied significantly from corridor to corri-
dor, depending on the nature of the traffic volumes and rou-
tine congestion patterns. They also changed dramatically 
within any given corridor on the basis of the size, duration, 
and timing of the disruption. Interestingly, 80th and 95th 
percentile travel times were less affected by noncrash inci-
dents, but crashes generally had significant impacts on both 
of these performance measures. This is not surprising because 

Not only does traffic volume affect whether an incident 
causes congestion, but it affects how long that congestion lasts 
once the primary incident has been removed. The Seattle data 
showed that in the morning peaks, disruptions had a more 
noticeable effect on the timing of the end of the peak period, 
while in the evening the opposite was true. In the afternoon, as 
Figure 5.16 shows, disruptions began to cause greater travel 
time changes well before the start of the traditional peak period. 
However, most congestion ended very close to when congestion 
under no rain-no disruption conditions would have occurred. 
The effects of late-night crashes can be seen in the graph.

The volume lines in Figures 5.15 and 5.16 explain the dis-
crepancies in the end times of the a.m. and p.m. peak conges-
tion. Very early in the a.m. peak period, insufficient volume 
exists to cause congestion to form. Once volumes grow and 
congestion occurs, disruptions (incidents or rain) make that 
congestion worse. Because midday volumes are still fairly 
high, residual queues can take a long time to clear.

In the p.m., those same fairly high midday volumes (espe-
cially for corridors experiencing peak direction movements) 
mean that even small disruptions are likely to cause conges-
tion before the normal start of the p.m. peak period. How-
ever, even though queues grow larger than usual during those 
peak periods, the sharp decline in traffic volumes at the end 
of the p.m. peak means that as long as the disruption has been 
cleared, those queues tend to dissipate quickly at the end of 
the peak period.

Although results varied dramatically between study sec-
tions, if the results of all 42 study sections are simply averaged, 

Figure 5.16. Effect of disruptions and traffic volume on travel time on I-5, 
northbound Lynnwood section.
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noncrash incidents tend to be smaller disruptions, and con-
sequently have less of an impact on those very bad days when 
congestion is at its worst. Crashes, however, are often one of 
the contributing factors to very bad commute days.

Summary

Analysis of 42 roadway segments in the Seattle area showed 
that a majority of travel delay in the region is the direct result 
of traffic volume demand exceeding available roadway 
capacity. Whenever they occur, incidents, crashes, and bad 
weather add significantly to the delays that can be otherwise 
expected. The largest of these disruptions plays a significant 
role in the worst travel times that travelers experience on 
these roadways. However, the relative importance of any one 
type of disruption can vary considerably from corridor to 
corridor.

http://www.wsdot.wa.gov/research/reports/fullreports/619.1.pdf
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C h a p t e r  6

Introduction

The research team pursued an empirical approach to studying 
the determinants of reliability, and specifically, how reliability 
changes with improvements. Continuous travel time data are 
required for empirical studies of reliability, and the team was 
experienced with using these data on past projects. A great deal 
of continuous travel time data is collected by public agencies 
(i.e., traffic management centers [TMCs]). Technically, TMC 
data are almost exclusively speed, volume, and lane occupancy 
measurements from roadway-based detectors, but if the detec-
tors are closely spaced (half a mile or less), travel times can be 
reasonably estimated from them. Even if the resulting travel 
time estimates are off the true value, the variability (used to 
define reliability) would still be internally consistent. Further, 
relative (percentage) changes are likely to be in line with per-
fectly and continuously measured distance-based travel times, 
a standard that has not yet been achieved in practice. Continu-
ous travel time data are an absolute requirement for empirical 
studies of reliability because reliability is defined by how travel 
times vary over a considerable time span. Exploratory research 
revealed that a minimum of 6 months of data is necessary for 
urban freeways where winter weather is not a problem; more 
data are needed where winter weather causes problems on a 
significant number of days. The team strove for a complete 
year’s worth of data in developing reliability patterns, and 
achieved this in all but a few cases.

Because of the need to obtain traffic data of the highest qual-
ity that considered moderately to severely congested locations, 
the research team did not initially seek locations that were 
candidates for before-and-after studies. Rather, the team first 
sought data from locations known from previous experience to 
satisfy the project requirements and then looked for before-
and-after improvements in these areas. Fortunately, 17 before-
and-after instances were identified at the study locations.  
These instances covered only a few types of reliability improve-
ments, which the team knew from the beginning would be dif-
ficult to cover completely. This known difficulty resulted in the 

reliance on statistical model development specified in the orig-
inal work plan. The types of improvements studied were

•	 Ramp metering (four locations);
•	 Incident management large-truck rapid clearance policies 

(two locations);
•	 Freeway service patrol implementation (two locations);
•	 High-occupancy toll lane conversion (one location); and
•	 Capacity additions and bottleneck improvements (eight 

locations).

Previous work by members of the research team provided 
preliminary insight into what could be expected from the 
before-and-after tests (1). In a hypothetical experiment, 
travel time data for a complete year on a heavily congested 
section of I-75 in Atlanta were used. From the travel time 
distribution, all of the abnormally high travel times (those 
greater than 7 minutes for the 4.05-mile corridor) were arti-
ficially reduced by an across-the-board 25%. This reduction 
was made to simulate the results of a wide variety of possible 
improvements on travel times, including capital improvements 
and operations strategies targeting the events that cause higher-
than-normal travel times. As shown in Figure 6.1 and Table 6.1, 
the effect of this hypothetical before-and-after condition is to 
reduce delay and improve reliability.

Because the analysis reduced all higher-than-normal travel 
times (not just the travel times on days when disruptions 
occurred), the experiment is especially relevant for gauging 
the effects of capital improvements, which will improve travel 
times on all days, not just the ones with disruptions. The 
results show that such strategies will improve both the average 
travel time and reliability.

Another previous study by members of the team devel-
oped predictive models for recurring and incident delay 
using a stochastic modeling approach (2). In this approach, a 
simple test link was used in conjunction with a queuing model 
to estimate the total delay caused by congestion on the link. 
Both demand volumes and incident characteristics were 

Before-and-After Studies of  
Reliability Improvements
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Table 6.1. Hypothetical Case of  
Treating Unreliable Travel Times on 
Southbound I-75 in Central Atlanta,  
4:00 to 7:00 P.M. (1)

Travel Time 
Measure

Observed 
Travel Times

Abnormally 
High Travel 

Times Reduced 
by 25%

Average travel  
time (min)

9.0 7.1

95th Percentile 
(min)

13.1 9.8

Buffer Time Index 46% 39%

Table 6.2. Model-Developed Relationship 
Between AADT/C and Delay (2)

AADT/C
Recurring Delay Due 
to Queues (h/vehicle)

Incident Delay 
(h/vehicle mile)

8 0.0000 0.0011

9 0.0086 0.0019

10 0.0271 0.0029

11 0.0551 0.0042

12 0.0924 0.0056

13 0.1389 0.0072

14 0.1942 0.0088

Figure 6.1. Actual and (hypothetical) improved peak period travel 
times on I-75 southbound in central Atlanta, 2002 (1).

reliability, sometimes showing an increase, sometimes a 
decrease, even when average congestion has decreased. 
The instability of the Buffer Index is consistent with 
the results presented in Chapter 4. As a result, the team 
chose the Planning Time Index (95th percentile travel time 
divided by free-flow travel time) to be the primary reliabil-
ity metric. A summary of the findings appears in Table 6.3, 
and complete findings are shown in Appendix B. In nearly 
all cases, the improvements studied proved to be beneficial 
for both average congestion and reliability. The increases  
in two cases in Minneapolis–St. Paul may be the result  
of data problems or major shifts in travel patterns in the 
after condition. The evaluation of adaptive ramp metering 
on I-210 is ongoing as the system continues to be refined, 
but the first results showed that algorithms were not  
operating as expected. Given the results from all of the sec-
tions showing positive effects on both average congestion 
and reliability, the team does not recommend use of the 

allowed to vary stochastically; basically, this was a Monte 
Carlo simulation that for any given run determined whether 
an incident occurred and if it did, what its lane blocking and 
duration characteristics were. A series of equations were fit to 
the results of the Monte Carlo simulation. The results showed 
that both recurring and incident delay are positively corre-
lated with the annual average daily traffic (AADT)-to-capacity 
(AADT/C) ratio (Table 6.2). Note that the units used to define 
delay in Table 6.2 differ because recurring delay is a function 
of the number of vehicles trying to get through a bottleneck, 
and incident delay is a function of both number of vehicles 
and section length; longer sections will have more incidents.

results

A full description of the before-and-after analyses is given 
in Appendix B. A review of the results in Appendix B shows 
that the Buffer Index is an unstable indicator of changes in 
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Table 6.3. Summary of Urban Freeway Before and After Studies

No. Urban Area
Highways 
Covered Improvement Reliability Impacts (Peak Period)

1 Los Angeles I-210 Ramp metering: design, field implemen-
tation, and evaluation of new advanced 
on-ramp control algorithms on west-
bound direction of I-210.

Slight increases in average travel time and 
Planning Time Index (PTI) were observed. 
However, subsequent to this evaluation, 
the algorithms have been adjusted.

2 San Francisco  
Bay Area

I-580 Ramp metering. 22% reduction in average travel time.
20% reduction in PTI.

3 Seattle SR 520 Ramp metering. 11% reduction in average travel time.
12% reduction in PTI.

4 Atlanta I-285, Northern Arc Ramp metering. 9% reduction in average travel time.
7% reduction in PTI.
3% increase in sustainable service rate.

5 Atlanta All freeways inside 
beltway 
perimeter

Incident management: incentive program 
for reducing large-truck crash incident 
duration (90 minutes).

13% reduction in large-truck crash incident 
duration.

9% reduction in lane hours lost per large-
truck crash.

6 Los Angeles I-710 Incident management: evaluation of pilot 
project to deploy towing service for 
big-rig tractor trailers.

10% reduction in average travel time.
20% reduction in PTI.

7 San Diego I-8 Incident management: expansion of the 
existing Freeway Service Patrol Beat-7 
on I-8.

3% reduction in average travel time.
4% reduction in PTI.

8 San Diego SR 52 Incident management: expansion of the 
existing Freeway Service Patrol.

20% reduction in average travel time.
10% reduction in PTI.

9 Minneapolis–St. Paul I-94 Capacity expansion: add third lane in 
each direction.

43% reduction in average travel time.
46% reduction in PTI.

10 Minneapolis–St. Paul I-494 Capacity expansion: add third lane in 
each direction.

31% reduction in average travel time.
16% reduction in PTI.

11 Minneapolis–St. Paul I-394 Capacity expansion: add auxiliary lanes 
westbound.

35% reduction in average travel time.
38% reduction in PTI.

12 Minneapolis–St. Paul Highway 169 Capacity expansion: convert signalized 
intersections to diamond interchanges.

16% increase in average travel time.
11% reduction in PTI.

13 Minneapolis–St. Paula Highway 100 Capacity expansion: add third lane north-
bound. Add auxiliary lane southbound. 
Convert Highway 7 interchange from a 
clover leaf to a folded diamond.

20% reduction in average travel time.
30% increase in PTI.

14 Seattle I-405 Southbound Capacity expansion: addition of one 
general-purpose lane.

11% reduction in average travel time.
11% reduction in PTI.

15 Seattle I-405 Northbound Capacity expansion: addition of one  
general-purpose lane.

42% reduction in average travel time.
35% reduction in PTI.

16 Seattle I-405–SR 167 
Interchange

Capacity expansion: grade separation 
ramp connecting southbound I-405 off-
ramp with southbound SR 167 on-ramp.

20% reduction in average travel time.
23% reduction in PTI.

17 Minneapolis–St. Paul I-394 High-occupancy toll lane conversion. 8% reduction in average travel time.
30% reduction in PTI.

a This long (16-mile) study segment was influenced by a downstream bottleneck.

two Minneapolis studies and the I-210 study in user 
applications.
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C h a p t e r  7

potential Model Forms

Background

The primary goal of the statistical analysis was to produce a 
highly practical set of relationships that could be used to pre-
dict reliability, especially within the contexts of existing techni-
cal applications such as travel demand forecasting models and 
simulation models. The Phase 1 report proposed two model 
forms to be investigated: (a) a detailed deterministic model 
that uses all the data being collected to the maximum degree 
(data-rich model) and (b) a simpler model reflecting the fact 
that many of the applications (e.g., Highway Capacity Manual 
[HCM] and travel demand forecasting models) work in an 
environment with limited data (data-poor model). The first 
model will reveal a deep understanding of reliability and its 
causal factors; the second makes the relationships operational 
for many applications.

It should be pointed out that the model forms are aimed at 
predicting reliability, which is based on summarizing travel 
times that occur over the course of a year. So, every observa-
tion in the analysis data set represents summarized conditions 
for a study section for a year. The statistical models are not 
designed to predict what a specific travel time will be given a 
set of conditions (e.g., volume, weather, and incident charac-
teristics). Such prediction can be done with a variety of other 
analytic methods, such as microsimulation. Prediction or the 
probability of a specific travel time occurring is related to reli-
ability, but predicting reliability metrics is not the purpose of 
this research. However, the microscale analysis done for the 
congestion by source analysis (Chapter 5) does get down to 
this level.

Data-Rich Model

The data-rich model structure is mechanistic in nature; the 
factors (the mechanisms) that cause unreliable travel times 
were postulated based on the research team’s past experience. 

It also is a tiered model in which the independent variables at 
lower levels (left side of the model chain) become dependent 
variables at higher levels. The key feature of this model struc-
ture is that improvements can be traced to a relatively small 
number of factors, which reduces the need to observe reli-
ability changes in before-and-after experiments. As discussed 
earlier, to conduct before-and-after tests of all improvements 
would be cost prohibitive.

The structure of the data-rich deterministic (tiered) model 
is outlined in Figure 7.1 and explained below.

The data-rich model structure can be explained as a series 
of causal mechanisms that influence each other. Each tier is 
constructed so that the most immediate and direct influences 
(independent variables) are used to explain the effect of the 
dependent variable. For example, for the effects of incidents, 
it is postulated that incident-related reliability is most directly 
affected by the capacity hours lost (a combination of lane 
hours and shoulder hours lost because of blockages) due to 
incidents. The capacity hours lost attributable to incidents 
are directly affected (i.e., caused) by incident duration, the 
usability of shoulders, the incident rate, and so on.

In Figure 7.1, Reliability is equal to f{demand-to-capacity 
(d/c) ratio, distance to downstream bottleneck, number of 
lanes, primary incident capacity hours lost, secondary crash 
capacity hours lost, opposite direction incident hours (rubber-
necking of incidents in the opposite direction by motorists in 
the study direction), work zone capacity hours lost, weather 
factors, traffic fluctuation, active control type}. Note that 
capacity hours lost is a way to combine lane hours lost and 
shoulder hours lost for incidents, as well as an approximation 
for the additional hours lost because of work-zone visual 
effects. This is not the measured capacity loss, but the straight 
translation of lanes and shoulders lost to HCM-based (theo-
retical) capacity. Measured capacity loss due to incidents will 
be greater.

Reliability is measured by one of the metrics in Chapter 2; 
for d/c ratio, demand is measured as the average for the time 

Cross-Sectional Statistical Analysis of Reliability
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Notes:  1) “           ” means “...is a function of...”
 2) Primary Incident and Secondary Crash hours lost are modeled similarly.

Figure 7.1. Variables and tiered structure for the mechanistic (data-rich) model.
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slice under study, and capacity is physical (HCM) capacity. 
The d/c ratio should be estimated as the average for the study 
section or, alternatively, the critical (highest) d/c ratio for the 
links on the study section.

An explanation of the some of the other factors in Fig-
ure 7.1 follows:

•	 Incident capacity hours lost = f{incident duration, primary  
incident rate, shoulder usability}. Lane hours lost may be 
used instead of capacity hours lost because it can be mea-
sured directly; capacity is a transformed measure as it 
requires using analytic methods to calculate.
44 Duration = f{equipment, incident management policies,  
truck percentage}. Truck percentage is used as a surro-
gate to capture the different types of incidents that can 
occur (lateral locations, blockages).

44 Primary incident rate = f{primary crash rate break-
downs}. It was not the research team’s intent to conduct  
a detailed safety analysis yielding a predictive relationship 
for accident (crash) rate. Crash reduction factors recently 
compiled by FHWA can be used to trace the impacts of 
safety-related geometric improvements through to changes 
in reliability (1).

44 Shoulder usability is the presence of a shoulder wide 
enough to store vehicles involved in a minor crash or 
breakdown.

•	 Opposite direction incident hours = f{incident duration, 
incident rate} (for the opposite direction of travel).
44 Duration = f{equipment, incident management policies, 
truck percentage}.

44 Primary incident rate = f{primary crash rate, break-
downs}.

•	 Work zone capacity hours lost = f{work zone type, work 
zone duration}.
44 Work zone duration = f{work zone management policies}.

•	 Weather factors = f{precipitation type, precipitation inten-
sity, temperature, fog}.

Data-Poor Model

Originally, a model form using a combination of easily 
obtained data items was envisioned (Table 7.1). This simpler 
form would be compatible with many user applications for 
which detailed data are not available. However, during the 
course of the research, the team decided on a different strat-
egy for the data-poor model. As discussed in the following 
section, it became apparent that all of the reliability metrics 
could be predicted as a function of mean travel time. This 
feature greatly simplifies the construction of the data-poor 
model and makes it compatible with most existing analytic 
methods.

relationship Between  
Mean travel time and 
reliability Metrics

Link Level: Urban Freeways

Exploratory Research

All travel demand models and traffic operations models can 
predict mean speeds of traffic and, therefore, mean travel 
time rates. With the mean travel time rate (minutes per mile) 
and the predicted 95% travel time rate, one then can compute 
the Buffer Index. An analysis was undertaken with a small 
data set to develop equations for predicting the 95% travel 
time rate as a function of the mean travel time rate.

The equations were developed for the weekday peak peri-
ods for two freeway corridors:

1. San Mateo SR 101 freeway between I-280 in San Fran-
cisco and SR 114 in Palo Alto, California, a distance of 
27 miles; and

2. Alameda I-238 and I-580 freeways between I-238 in San 
Leandro and I-205 in Tracy, California, a distance of  
33 miles.

Nineteen days of toll tag vehicle travel time data were col-
lected for San Mateo SR 101 during the hours of 6:00 to 
10:00 a.m. and 2:30 to 7:30 p.m. each weekday (excluding 
holidays) between January 5 and January 31, 2009, for four 
directional segments ranging from 10.8 to 15.9 miles in 
length. Sample sizes ranged between 8,500 and 19,200 toll 
tag–equipped vehicles for each direction for each peak period. 

Table 7.1. Original Independent Variables  
for the Data-Poor Model

Weather Variables

Same as for data-rich model form

Incident Variables

Annual collisions per million vehicle miles traveled

Proportion of fatal or injury collisions

Incident duration

Design and Control Variables

Design capacity

Speed limit

Average signal delay (if applicable)

Traffic management activities (e.g., ramp metering, freeway service 
patrol)

Demand Variables

Hourly, weekly, seasonal demand profile over course of year
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Eight data points on reliability were obtained. A data point 
consisted of mean, standard deviation, and 95th percentile 
travel time measurements for each direction of travel on each 
segment for each peak period. The data for San Mateo SR 101 
are given in Table 7.2. Figure 7.2 shows the regression curves 
fitted to the data.

Sixteen days of toll tag vehicle travel time data were collected 
for Alameda I-238 and I-580 during the hours of 5:00 to 
9:00 a.m. and 2:30 to 7:30 p.m. each weekday (excluding 

holidays) between May 2 and May 23, 2008, for six directional 
segments ranging from 2 to 21 miles in length. Twelve data 
points on reliability were obtained. The data for Alameda I-238 
and I-580 are given in Table 7.3. Figure 7.3 shows the regression 
curves fitted to the data. Figure 7.4 shows the combined 
Alameda and San Mateo freeway reliability relationships.

The results for this exploratory research were very encour-
aging. They implied that prediction of the reliability metrics 
could be based on the mean travel time. This led the team to 

Table 7.2. San Mateo SR 101 Reliability Data

Segment Stretch
Length 

(mi) Peak Period
Mean 
(min)

Standard 
Deviation (min)

95th 
Percentile

Buffer 
Index (%)

Sample 
Size

SR 101 northbound Palo Alto (SR 114) 
to SR 92

10.75 6:00 to 10:00 a.m. 38.4 31.2 132.2 244 8,598

SR 101 northbound Palo Alto (SR 114) 
to SR 92

10.75 2:30 to 7:30 p.m. 27.8 15.2 73.5 164 19,145

SR 101 southbound SR 92 to Palo Alto 
(SR 114)

10.75 6:00 to 10:00 a.m. 36.3 29.4 124.6 243 17,321

SR 101 southbound SR 92 to Palo Alto 
(SR 114)

10.75 2:30 to 7:30 p.m. 26.0 18.9 82.8 219 9,864

SR 101 northbound SR 92 to I-280 15.85 6:00 to 10:00 a.m. 46.5 29.8 136.0 193 9,395

SR 101 northbound SR 92 to I-280 15.85 2:30 to 7:30 p.m. 33.5 24.6 107.2 220 10,696

SR 101 southbound I-280 to SR 92 15.85 6:00 to 10:00 a.m. 48.9 34.5 152.5 212 17,679

SR 101 southbound I-280 to SR 92 15.85 2:30 to 7:30 p.m. 44.6 22.8 113.1 154 13,108

Figure 7.2. Reliability relationships for San Mateo SR 101 for weekday a.m. 
and p.m. peak periods, January 5 to January 31, 2010.
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examine both link-level and section-level predictive models 
using more complete data sets.

Final Link-Level Reliability Predictive Models

Data from 164 detector locations on the Atlanta study sec-
tions were analyzed. A detector is considered to represent 
conditions on a link, and a link on a freeway is between inter-
changes. The Travel Time Index (TTI) was computed separately 

for the peak and midday time periods and combined into a 
single data set to get data over a wide range of congestion 
conditions (see Appendix G for an explanation of how the 
TTI was calculated and interpreted). Figures 7.5 and 7.6 show 
the relationships between the mean and 95th percentile TTI 
and 80th percentile TTI, respectively, for the Atlanta study 
links. Linear, exponential, and logarithmic regression models 
were fit to these data; the exponential form was found to pro-
vide the best fit. The models were fit without an intercept 

Table 7.3. Reliability Data for Alameda I-238 and I-580

Segment Stretch
Length 

(mi) Peak Period
Mean 
(min)

Standard 
Deviation (min)

95% 
Percentile

Buffer 
Index (%)

I-238 westbound I-580 to I-880 2 5:00 to 9:00 a.m. 4.3 0.8 6.6 55

I-238 westbound I-580 to I-880 2 2:30 to 7:30 p.m. 4.4 2.4 11.7 164

I-238 eastbound I-880 to I-580 2 5:00 to 9:00 a.m. 2.2 0.1 2.7 19

I-238 eastbound I-880 to I-580 2 2:30 to 7:30 p.m. 3.2 10.0 33.0 947

I-580 eastbound I-238 to I-680 10 5:00 to 9:00 a.m. 9.7 0.4 10.9 12

I-580 eastbound I-238 to I-680 10 2:30 to 7:30 p.m. 11.2 2.9 19.8 77

I-580 westbound I-680 to I-238 10 5:00 to 9:00 a.m. 10.1 1.3 14.1 40

I-580 westbound I-680 to I-238 10 2:30 to 7:30 p.m. 9.3 0.5 10.7 15

I-580 eastbound I-680 to I-205 21 5:00 to 9:00 a.m. 20.5 0.5 21.9 7

I-580 eastbound I-680 to I-205 21 2:30 to 7:30 p.m. 27.3 4.4 40.5 48

I-580 westbound I-205 to I-680 21 5:00 to 9:00 a.m. 29.4 6.2 48.0 63

I-580 westbound I-205 to I-680 21 2:30 to 7:30 p.m. 21.4 0.6 23.3 9

Figure 7.3. Reliability relationships for Alameda I-238 and I-580 for  
weekday a.m. and p.m. peak periods, May 2 to May 23, 2008.
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good measure of how accurately a model predicts the 
response, and is the most important criterion for fit if the 
main purpose of the model is prediction, which is the aim 
here. The predictive equations are

95

16 3

th percentile TTI mean TTI

RMSE

1.6954=

= . %; alpha level of coefficient <( )0 0001 7 1. ( . )

term so that when the mean TTI is 1.0, the percentile values 
also will be 1.0. The lack of an intercept term means that the 
calculated R2 values were not meaningful. Instead, root mean 
square error (RMSE) was used as the goodness-of-fit mea-
sure. RMSE is the square root of the variance of the residuals. 
It indicates the absolute fit of the model to the data (i.e., how 
close the observed data points are to the model’s predicted 
values). Lower values of RMSE indicate better fit. RMSE is a 

Figure 7.4. Combined travel time reliability data relationships (exploratory) 
for SR 101, I-238, and I-580.

Figure 7.5. 95th percentile TTI versus mean TTI for Atlanta study links.
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80

7 4

th percentile TTI mean TTI

RMSE

1.3162=

= . %; aalpha level of coefficient <( )0 0001 7 2. ( . )

standard deviation mean TTI

RMSE

= −( )
=

1

6

0 5231.

00 0 0001 7%; . ( .alpha level of coefficient <( ) 33)

It is extremely important to note that in the data used to develop 
these equations, mean TTI is the grand (overall) mean; because 
it was developed from continuous detector data, it includes 
all of the possible influences on congestion (e.g., incidents 
and inclement weather). Almost all applications and models 
that predict mean travel time and speeds only consider recur-
ring congestion. Therefore, an adjustment must be made to 
the recurring-only travel time so that it corresponds to the 
grand mean shown in Equations 6 through 8.

Data from the Atlanta and Seattle study sections were used 
to develop the recurring-only adjustment factor. For the peak 
period time slice, a simple assignment was made for each sec-
tion: if either an incident or weather occurred on a particular 
day, the resulting TTI was considered to be nonrecurring. 
Otherwise it was assigned as recurring. The analysis showed 
that the nonrecurring TTI was 26.4% higher than the recur-
ring TTI in Atlanta and 28.7% higher in Seattle. Table 7.4 
presents the section-by-section data for Seattle and also dem-
onstrates that, even though travel time variability (as mea-
sured by the standard deviation) is lower for disruption-free 
conditions, there still is a substantial amount of variability 
associated with recurring-only congestion.

The ratio of the overall mean to the recurring mean was 
also computed for the peak period; in Atlanta the overall 

mean TTI was 12.1% higher than the recurring-only TTI, 
and in Seattle it was 13.0% higher. Seattle data were also used 
to develop recurring-to-nonrecurring ratios for the midday 
and weekend time periods (Table 7.5). However, as noted in 
Chapter 5, the amount of nonrecurring delay depends very 
much on the base level or recurring delay, so applying per-
centages can be misleading. Therefore, the peak period, mid-
day, and weekend and holiday results were pooled and a 
regression equation was developed:

overall mean TTI recurring mean TTI1= 1 0274. p ..2204

alpha level of coefficientsR2 0 910= . ; ==(
= )

0 001

167 7

.

( .

and 0.0001,

respectively; n 44)

where overall mean TTI is the mean TTI in the predictive 
equations, and recurring mean TTI is the mean TTI that con-
siders recurring sources only.

Section Level: Urban Freeways

Data from urban freeway study sections in Atlanta, Minne-
apolis, Jacksonville, Los Angeles, Houston, and San Diego 
were used to develop relationships between a wider set of reli-
ability metrics and mean TTI. The peak period and midday 
measurements were again combined to obtain a data set that 
had both congested and uncongested observations. The rela-
tionships for selected travel time metrics appear in Figures 7.7 
through 7.14. Equations 10 through 20 below are the predic-
tive equations. Note that the parameters necessary to com-
pute the Buffer Index and skew statistic are estimated.

Figure 7.6. 80th percentile TTI versus mean TTI for Atlanta study links.
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Table 7.4. Recurring, Nonrecurring, and Total TTIs for Seattle Study Sections 
During Peak Periods

Section Time of Peak Congestion Type

TTI

Mean Standard Deviation

I-405 Bellevue northbound a.m. Nonrecurring 1.418 0.422

Recurring 1.215 0.252

Total 1.281 0.252

I-405 Bellevue northbound p.m. Nonrecurring 1.672 0.800

Recurring 1.206 0.274

Total 1.346 0.274

I-405 Kennydale northbound a.m. Nonrecurring 4.405 1.699

Recurring 3.198 1.480

Total 3.657 1.480

I-405 Kennydale northbound p.m. Nonrecurring 1.347 0.517

Recurring 1.130 0.212

Total 1.186 0.212

I-405 Kennydale southbound a.m. Nonrecurring 1.915 0.686

Recurring 1.427 0.395

Total 1.539 0.395

I-405 Kennydale southbound p.m. Nonrecurring 2.200 0.975

Recurring 1.730 0.579

Total 1.898 0.579

I-405 Kirkland northbound a.m. Nonrecurring 1.017 0.055

Recurring 1.009 0.016

Total 1.011 0.016

I-405 Kirkland northbound p.m. Nonrecurring 2.120 0.788

Recurring 1.712 0.677

Total 1.995 0.677

I-405 Kirkland southbound a.m. Nonrecurring 1.917 0.535

Recurring 1.574 0.450

Total 1.766 0.450

I-405 Kirkland southbound p.m. Nonrecurring 1.161 0.303

Recurring 1.032 0.097

Total 1.104 0.097

I-405 North northbound a.m. Nonrecurring 1.065 0.095

Recurring 1.039 0.082

Total 1.045 0.082

I-405 North northbound p.m. Nonrecurring 1.687 0.454

Recurring 1.550 0.414

Total 1.609 0.414

(continued on next page)
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I-405 North southbound a.m. Nonrecurring 3.534 1.879

Recurring 2.254 1.320

Total 2.820 1.320

I-405 North southbound p.m. Nonrecurring 1.239 0.558

Recurring 1.084 0.220

Total 1.123 0.220

I-405 South northbound a.m. Nonrecurring 1.320 0.526

Recurring 1.222 0.210

Total 1.241 0.210

I-405 South northbound p.m. Nonrecurring 2.810 1.008

Recurring 2.420 0.719

Total 2.578 0.719

I-405 South southbound a.m. Nonrecurring 1.566 0.736

Recurring 1.425 0.433

Total 1.446 0.433

I-405 South southbound p.m. Nonrecurring 1.807 0.981

Recurring 1.447 0.497

Total 1.522 0.497

I-5 Everett northbound a.m. Nonrecurring 1.053 0.344

Recurring 1.015 0.090

Total 1.026 0.090

I-5 Everett northbound p.m. Nonrecurring 2.253 1.337

Recurring 1.483 0.895

Total 1.872 0.895

I-5 Everett southbound a.m. Nonrecurring 1.306 0.734

Recurring 1.072 0.280

Total 1.152 0.280

I-5 Everett southbound p.m. Nonrecurring 1.167 0.416

Recurring 1.069 0.192

Total 1.105 0.192

I-5 Lynnwood northbound a.m. Nonrecurring 1.811 1.412

Recurring 1.303 0.680

Total 1.443 0.680

I-5 Lynnwood northbound p.m. Nonrecurring 1.483 0.717

Recurring 1.171 0.345

Total 1.312 0.345

Table 7.4. Recurring, Nonrecurring, and Total TTIs for Seattle Study Sections 
During Peak Periods (continued)

Section Time of Peak Congestion Type

TTI

Mean Standard Deviation

(continued on next page)
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I-5 Lynnwood southbound a.m. Nonrecurring 2.238 1.151

Recurring 1.572 0.641

Total 1.898 0.641

I-5 Lynnwood southbound p.m. Nonrecurring 1.246 0.719

Recurring 1.069 0.118

Total 1.117 0.118

I-5 North King northbound a.m. Nonrecurring 1.002 0.012

Recurring 1.001 0.010

Total 1.001 0.010

I-5 North King northbound p.m. Nonrecurring 1.935 0.543

Recurring 1.572 0.541

Total 1.791 0.541

I-5 North King southbound a.m. Nonrecurring 2.547 1.068

Recurring 1.856 0.669

Total 2.068 0.669

I-5 North King southbound p.m. Nonrecurring 1.749 1.327

Recurring 1.089 0.401

Total 1.345 0.401

I-5 Seattle CBD northbound a.m. Nonrecurring 2.036 0.775

Recurring 1.328 0.358

Total 1.913 0.358

I-5 Seattle CBD northbound p.m. Nonrecurring 2.110 0.845

Recurring 1.365 0.409

Total 1.961 0.409

I-5 Seattle CBD southbound a.m. Nonrecurring 1.181 0.307

Recurring 1.070 0.094

Total 1.127 0.094

I-5 Seattle CBD southbound p.m. Nonrecurring 1.852 0.487

Recurring 1.420 0.349

Total 1.721 0.349

I-5 Seattle North northbound a.m. Nonrecurring 1.020 0.041

Recurring 1.016 0.037

Total 1.017 0.037

I-5 Seattle North northbound p.m. Nonrecurring 1.913 0.843

Recurring 1.525 0.905

Total 1.741 0.905

Table 7.4. Recurring, Nonrecurring, and Total TTIs for Seattle Study Sections 
During Peak Periods (continued)

Section Time of Peak Congestion Type

TTI

Mean Standard Deviation

(continued on next page)
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I-5 Seattle North southbound a.m. Nonrecurring 2.721 1.611

Recurring 1.484 0.812

Total 2.157 0.812

I-5 Seattle North southbound p.m. Nonrecurring 3.044 1.654

Recurring 1.385 0.749

Total 2.560 0.749

I-5 South northbound a.m. Nonrecurring 2.008 0.771

Recurring 1.554 0.577

Total 1.764 0.577

I-5 South northbound p.m. Nonrecurring 1.020 0.111

Recurring 1.005 0.049

Total 1.014 0.049

I-5 South southbound a.m. Nonrecurring 1.005 0.043

Recurring 1.003 0.047

Total 1.004 0.047

I-5 South southbound p.m. Nonrecurring 2.038 0.780

Recurring 1.426 0.522

Total 1.761 0.522

I-5 Tukwila northbound a.m. Nonrecurring 1.826 0.765

Recurring 1.213 0.235

Total 1.502 0.235

I-5 Tukwila northbound p.m. Nonrecurring 1.243 0.425

Recurring 1.017 0.031

Total 1.082 0.031

I-5 Tukwila southbound a.m. Nonrecurring 1.077 0.338

Recurring 1.034 0.195

Total 1.042 0.195

I-5 Tukwila southbound p.m. Nonrecurring 1.353 0.487

Recurring 1.116 0.273

Total 1.205 0.273

I-90 Bellevue eastbound a.m. Nonrecurring 1.003 0.024

Recurring 1.008 0.051

Total 1.007 0.051

I-90 Bellevue eastbound p.m. Nonrecurring 1.221 0.598

Recurring 1.097 0.211

Total 1.117 0.211

Table 7.4. Recurring, Nonrecurring, and Total TTIs for Seattle Study Sections 
During Peak Periods (continued)

Section Time of Peak Congestion Type

TTI

Mean Standard Deviation

(continued on next page)
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I-90 Bellevue westbound a.m. Nonrecurring 1.570 0.601

Recurring 1.216 0.241

Total 1.307 0.241

I-90 Bellevue westbound p.m. Nonrecurring 1.509 1.058

Recurring 1.026 0.214

Total 1.305 0.214

I-90 Bridge eastbound a.m. Nonrecurring 1.208 0.366

Recurring 1.138 0.255

Total 1.190 0.255

I-90 Bridge eastbound p.m. Nonrecurring 1.592 0.624

Recurring 1.143 0.280

Total 1.414 0.280

I-90 Bridge westbound a.m. Nonrecurring 1.373 0.435

Recurring 1.116 0.238

Total 1.159 0.238

I-90 Bridge westbound p.m. Nonrecurring 2.233 1.022

Recurring 1.551 0.748

Total 1.739 0.748

I-90 Issaquah eastbound a.m. Nonrecurring 1.000 0.008

Recurring 1.001 0.017

Total 1.001 0.017

I-90 Issaquah eastbound p.m. Nonrecurring 1.049 0.121

Recurring 1.016 0.052

Total 1.023 0.052

I-90 Issaquah westbound a.m. Nonrecurring 2.005 0.863

Recurring 1.380 0.485

Total 1.476 0.485

I-90 Issaquah westbound p.m. Nonrecurring 1.010 0.025

Recurring 1.016 0.038

Total 1.015 0.038

I-90 Seattle eastbound a.m. Nonrecurring 2.582 1.495

Recurring 1.824 1.124

Total 1.957 1.124

I-90 Seattle eastbound p.m. Nonrecurring 2.185 1.610

Recurring 1.294 0.760

Total 1.432 0.760

Table 7.4. Recurring, Nonrecurring, and Total TTIs for Seattle Study Sections 
During Peak Periods (continued)

Section Time of Peak Congestion Type

TTI

Mean Standard Deviation

(continued on next page)
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I-90 Seattle westbound a.m. Nonrecurring 1.423 0.527

Recurring 1.095 0.288

Total 1.210 0.288

I-90 Seattle westbound p.m. Nonrecurring 1.192 0.199

Recurring 1.118 0.132

Total 1.140 0.132

SR 167 Auburn northbound a.m. Nonrecurring 1.893 0.622

Recurring 1.627 0.573

Total 1.685 0.573

SR 167 Auburn northbound p.m. Nonrecurring 1.094 0.181

Recurring 1.058 0.058

Total 1.067 0.058

SR 167 Auburn southbound a.m. Nonrecurring 1.148 0.731

Recurring 1.060 0.299

Total 1.072 0.299

SR 167 Auburn southbound p.m. Nonrecurring 2.487 1.280

Recurring 1.739 0.878

Total 1.961 0.878

SR 167 Renton northbound a.m. Nonrecurring 1.802 1.124

Recurring 1.325 0.356

Total 1.624 0.356

SR 167 Renton northbound p.m. Nonrecurring 1.244 0.465

Recurring 1.032 0.106

Total 1.172 0.106

SR 167 Renton southbound a.m. Nonrecurring 1.060 0.063

Recurring 1.055 0.064

Total 1.056 0.064

SR 167 Renton southbound p.m. Nonrecurring 2.163 1.054

Recurring 1.423 0.541

Total 1.637 0.541

SR 520 Redmond eastbound a.m. Nonrecurring 1.017 0.053

Recurring 1.010 0.014

Total 1.011 0.014

SR 520 Redmond eastbound p.m. Nonrecurring 2.148 0.951

Recurring 1.595 0.483

Total 1.869 0.483

Table 7.4. Recurring, Nonrecurring, and Total TTIs for Seattle Study Sections 
During Peak Periods (continued)

Section Time of Peak Congestion Type

TTI

Mean Standard Deviation

(continued on next page)
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SR 520 Redmond 
westbound

a.m. Nonrecurring 1.088 0.271

Recurring 1.022 0.119

Total 1.037 0.119

SR 520 Redmond 
westbound

p.m. Nonrecurring 1.764 1.307

Recurring 1.163 0.628

Total 1.498 0.628

SR 520 Seattle eastbound a.m. Nonrecurring 1.967 0.687

Recurring 1.555 0.526

Total 1.695 0.526

SR 520 Seattle eastbound p.m. Nonrecurring 1.632 0.595

Recurring 1.370 0.378

Total 1.483 0.378

SR 520 Seattle westbound a.m. Nonrecurring 1.843 0.780

Recurring 1.353 0.487

Total 1.509 0.487

SR 520 Seattle westbound p.m. Nonrecurring 3.004 1.003

Recurring 2.370 0.994

Total 2.722 0.994

I-405 Bellevue southbound a.m. Nonrecurring 1.311 0.545

Recurring 1.130 0.587

Total 1.169 0.587

I-405 Bellevue southbound p.m. Nonrecurring 4.163 1.562

Recurring 2.006 0.975

Total 3.731 0.975

I-405 Eastgate northbound a.m. Nonrecurring 1.798 0.445

Recurring 1.616 0.456

Total 1.667 0.456

I-405 Eastgate northbound p.m. Nonrecurring 1.104 0.283

Recurring 1.042 0.124

Total 1.058 0.124

I-405 Eastgate southbound a.m. Nonrecurring 1.228 0.901

Recurring 1.035 0.189

Total 1.064 0.189

I-405 Eastgate southbound p.m. Nonrecurring 3.048 1.265

Recurring 2.581 0.786

Total 2.728 0.786

Total Nonrecurring 1.733

Total Recurring 1.347

Overall Total 1.522

Table 7.4. Recurring, Nonrecurring, and Total TTIs for Seattle Study Sections 
During Peak Periods (continued)

Section Time of Peak Congestion Type

TTI

Mean Standard Deviation
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where PctTripsOnTime10 is the percentage of trips that occur 
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where PctTripsOnTime25 is the percentage of trips that occur 
below the threshold of 1.25 * median TTI.
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where PctTripsOnTime50mph is the percentage of trips that 
occur at space mean speeds above the threshold of 50 mph.
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where PctTripsOnTime45mph is the percentage of trips that 
occur at space mean speeds above the threshold of 45 mph.
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Table 7.5. Recurring, Nonrecurring, and 
Total TTIs for Seattle Study Sections  
on Midday Periods and Weekends  
and Holidays

Time Period Congestion Type TTI

Midday Recurring 1.121

Nonrecurring 1.227

Total 1.153

Weekend and Holiday Recurring 1.034

Nonrecurring 1.142

Total 1.058

Note: Midday was defined in the Seattle analysis as from 
9:00 a.m. to 3:00 p.m. Weekend and holiday excludes midnight 
to 4:00 a.m.

Figure 7.7. Section-level relationship for mean and 10th percentile TTI.
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where PctTripsOnTime30mph is the percentage of trips 
that occur at space mean speeds above the threshold of  
30 mph.

standard deviation mean TTI= −( )0 6182 1
0 540

.
.

p
44

2 781 0 0R = <. ; .alpha levels of coefficients 0001 7 15( ) ( . )

As with the link level, if the recurring-only mean TTI is avail-
able, it must be factored with Equation 3.

Appendix H presents a revised set of section-level equa-
tions for the prediction of the 80th, 95th, and 99th percentile 
TTIs, standard deviation, and on-time metrics. These were fit 
to the same data described in this section, but different model 
forms were selected.

Signalized Arterials

The predictive equations for reliability metrics as a function 
of the mean for signalized arterials were obtained from the  

Figure 7.8. Section-level relationship for mean and median TTI.

Figure 7.9. Section-level relationship for mean TTI and 80th percentile.
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six Orlando study sections. Unlike urban freeways, on the sig-
nalized arterials there was no apparent relationship between 
mean TTI and the on-time reliability metrics.

99

12 7

th percentile TTI mean TTI

RMSE

2.2120=

= . %; alpha level of coefficient <( )0 0001 7 16. ( . )

97 5

10 2

.

.

th percentile TTI mean TTI

RMSE

2.0845=

= %%; . ( .alpha level of coefficient <( )0 0001 7 177)

95

7 1

th percentile TTI mean TTI

RMSE

1.9125=

= . %; aalpha level of coefficient <( )0 0001 7 18. ( . )

80

2 1

th percentile TTI mean TTI

RMSE

1.4067=

= . %; aalpha level of coefficient <( )0 0001 7 19. ( . )

median TTI mean TTI

RMSE alpha le

0.9149=

= 1 9. %; vvel of coefficient <( )0 0001 7 20. ( . )

Figure 7.10. Section-level relationship for mean TTI and 95th percentile.

Figure 7.11. Section-level relationship for mean TTI and on-time at 
median plus 10%.
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10th percentile TTI mean TTI

RMSE

0.2689=

= 4 0. %; aalpha level of coefficient <( )0 0001 7 21. ( . )

Rural Freeways

The predictive equations for reliability metrics as a function 
of mean TTI for rural freeways were derived using data from 
I-45 in Texas and I-95 in South Carolina. Four sections were 

used, two routes in each direction. The travel times used were 
for the entire segment (and, therefore, are long) and were 
derived using the vehicle trajectory method. These sections 
are not influenced by major urban areas or bottlenecks; exam-
ination of long-distance trips that pass through or otherwise  
touch urban areas is likely to reveal different patterns. An 
additional metric, the 97.5th percentile, was added because 
of the extreme skew in the travel time distributions for 
long-distance rural trips. Note that the 10th percentile TTI 

Figure 7.12. Section-level relationship for mean TTI and on-time at  
45 mph threshold.

Figure 7.13. Section-level relationship for mean TTI and on-time at  
30 mph threshold.
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was found to be 1.0, which is to be expected under routinely 
uncongested conditions. It also is worth noting that for these 
rural sections, mean TTI ranged from 1.025 to 1.045, extremely 
low values compared with the urban sections studied.

99th percentile TTI mean TTI

RMSE

4.2584=

= 4 2. %; aalpha level of coefficient =( )0 0052 7 22. ( . )

97.5th percentile TTI mean TTI

RMSE

2.6723=

= 0 3. %;; . ( .alpha level of coefficient <( )0 0001 7 23))

95th percentile TTI mean TTI

RMSE

2.1365=

= 0 4. %; aalpha level of coefficient <( )0 0001 7 24. ( . )

80th percentile TTI mean TTI

RMSE

1.4923=

= 0 1. %; aalpha level of coefficient <( )0 0001 7 25. ( . )

median TTI mean TTI

RMSE alpha le

0.8763=

= 0 1. %; vvel of coefficient <( )0 0001 7 26. ( . )

10th percentile TTI = 1 0 7 27. ( . )

Statistical Modeling  
of reliability

The research team followed the modeling approach for the 
data-rich model form as closely as possible (see further dis-
cussion at the beginning of this chapter). The concept was to 

build a chain of relationships that are deterministic in nature 
rather than merely searching for a single predictive equation 
from the large set of independent variables available. Several 
observations should be made about the data set that have 
implications for applications of the models:

•	 The study sections routinely experience relatively high lev-
els of congestion.

•	 Operations activities, particularly incident management, 
were well developed in the areas studied. Although it would 
have been interesting to study locations without such 
advanced activities, such locations in all likelihood would 
not have the data available for the research.

•	 The study sections had wide cross-sections, three or more 
lanes per direction, and number of lanes generally influ-
ences the impact of lane closures. (The average number of 
lanes on the study sections was 3.6.) However, number of 
lanes in the statistical models was not shown to be statisti-
cally significant. This may be a function of the reduced 
sample sizes in each number of lanes category.

•	 Minneapolis–St. Paul was the only location with any substan-
tial winter weather conditions. For this reason, frozen pre-
cipitation was not used as a potential predictor of reliability. 
Even in Minneapolis–St. Paul, the number of days with 
snowfall or icing was relatively limited throughout the course 
of a year, making it difficult for frozen precipitation to show 
up as statistically significant. Further, on days when snow or 
ice is forecast, it is likely that demand will be dramatically 
lowered: travelers seek other modes or decide not to travel. 
For these reasons, the reliability measures explored in this 
research are not useful descriptors of winter weather impacts.

Figure 7.14. Predicting peak period d/c ratio.
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•	 The above discussion points out an issue with statistical  
modeling of reliability. Rare events that cause extreme dis-
ruptions are difficult to relate to the percentiles of an annual 
travel time distribution; the more common occurrences 
(e.g., bottleneck congestion, incidents, rainfall) tend to pro-
duce the statistically significant results. Further, diversion of 
demand during extreme disruptions will lessen the observed 
travel time impacts below what they would have been in the 
face of full demand.

The dependent variables used in the statistical analysis were 
derived from the distributions of the TTI for each analysis 
section. TTI was chosen because, as a unitless index, it is nor-
malized for different section lengths. An alternative would 
have been to use the travel rate (measured in minutes per 
mile). Since TTI is computed as the actual travel rate divided 
by the ideal travel rate (i.e., the travel rate at the free-flow 
speed), the two measures are related. Several dependent vari-
ables based on the key moments of the TTI distributions 
were used: mean TTI, as well as the 10th, 50th (median), 
80th, 95th, and 99th percentile TTIs. From these statistics, 
both the Buffer Index and skew statistic were computed (see  
the formulas in Table 4.4). Note that no adjustment for 
recurring-only conditions was necessary because the mean 
TTI predicted here includes both recurring and nonrecur-
ring sources.

The first stage of this model form is to link reliability mea-
sures to lane hours lost due to incidents and work zones, d/c 
ratio, and weather conditions. During initial investigations, 
the project team noticed that including only incident lane 
hours lost as opposed to the sum of incidents and work 
zones produced more reliable models. This observation 
spurred a review of the original data used in the analysis. 
Members of the team talked with personnel at the Atlanta 
traffic management center (TMC), as well as with personnel 
from Traffic.com. Both groups admitted that work zone data 
are currently difficult to obtain and to code with accuracy. In 
Atlanta’s case, the work zone units sometimes report their 
activities to the TMC; at other times, the TMC enters work 
zone data they had not been notified of by viewing it through 
their closed-circuit cameras. Further complicating matters 
is that the lane-blocking characteristics of a work zone usu-
ally change over time, but the work zone units report only a 
single number representing the general condition. TMC per-
sonnel try to compensate by visually observing the work 
zone periodically, but this means that the work zone infor-
mation was not updated frequently, resulting in coded dura-
tions that were longer than the actual ones. Finally, in the 
highly congested sections used in the analysis, lane closures 
during peak times are avoided whenever possible. In the case 
of Traffic.com, the number of reported work zones was 
extremely low.

For these reasons, the team chose to include only incident 
lane hours lost in the statistical models as the major event—
or disruption-related variable. In the case of Atlanta, if an 
active work zone with lane closures occurred during the time 
period of interest (e.g., the peak period), that day was 
excluded when compiling the final analysis data set. In apply-
ing the models, it was expected that lane hours lost due to 
short-term work zones would have roughly the same impact 
as incidents. Long-term work zones will usually affect 
demand and result in shifts to other routes, modes, and times 
of travel.

A variety of equation forms were tried, including natural 
logarithmic, Cobb–Douglas (multiplicative with exponents), 
and polynomials. The natural logarithmic form was selected 
because it has the feature of predicting a TTI of 1.0 when the 
independent variables are zero. As with the simple models, 
RMSE was used as the primary goodness-of-fit measure. 
Because the models were fit with no intercept term, to 
ensure continuity at the zero point, R2 values could not be 
calculated. For the significance of the coefficients, a gener-
ous alpha level of 0.1 was used to allow variables to stay in 
the equations.

First-Stage Models

A large combination of independent variables was tested, 
with a focus on capturing the factors hypothesized to influ-
ence reliability (Figure 7.1), where reliability is measured 
over the course of a year. The results for the first-stage 
equations, the most important because they established 
that reliability can be predicted from congestion-causing 
conditions, appear below. Separate equations were fit for 
the peak hour, peak period, midday, and weekday time 
periods. Summary statistics for the base data appear in 
Table 7.6.

Peak Period

mean TTI dc ILHLcrit= + +e 0 09677 0 00862 0 0090. . .p p 44 7 28pRain05Hrs( ) ( . )

RMSE = 18.8%; alpha level of coefficients: <0.0001, <0.0001, 
0.0189 (in order of appearance in the equations).

99th percentile TTI dccrit= +e 0 33477 0 012350. .p pIILHL Rain05Hrs+( )0 025315 7 29. ( . )p

RMSE = 39.8%; alpha level of coefficients: <0.0001, 0.0002, 
0.0022.

95th percentile TTI dc Icrit= +e 0 23233 0 01222. .p p LLHL Rain05Hrs+( )0 01777 7 30. ( . )p

RMSE = 32.3%; alpha level of coefficients: <0.0001, <0.0001, 
0.0078.

http://www.Traffic.com
http://www.Traffic.com
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80th percentile TTI dccrit= +e 0 13992 0 01118. .p pIILHL Rain05Hrs+( )0 01271 7 31. ( . )p

RMSE = 25.8%; alpha level of coefficients: <0.0001, <0.0001, 
0.0163.

50th percentile TTI dccrit= +e 0 09335 0 00932. .p pIILHL( ) ( . )7 32

RMSE = 20.5%; alpha level of coefficients: <0.0001, <0.0001.

10th percentile TTI dccrit= +e 0 01180 0 00145. .p pIILHL( ) ( . )7 33

RMSE = 6.7%; alpha level of coefficients: 0.0169, 0.0060. 

Peak Hour

mean TTI dc ILHLcrit= + +e 0 27886 0 01089 0 0293. . .p p 55 7 34pRain05Hrs( ) ( . )

RMSE = 26.4%; alpha level of coefficients: 0.0008, 0.0094, 
0.0838.

99th percentile TTI dccrit= +e 1 13062 0 01242. .p pIILHL( ) ( . )7 35

RMSE = 41.3%; alpha level of coefficients: <0.0001, 0.0477.

95th percentile TTI dccrit= +e 0 63071 0 01219. .p pIILHL Rain05Hrs+( )0 04744 7 36. ( . )p

RMSE = 38.3%; alpha level of coefficients: <0.0001, 0.0436, 
0.0553.

80th percentile TTI dccrit= +e 0 52013 0 01544. .p pIILHL( ) ( . )7 37

RMSE = 34.1%; alpha level of coefficients: <0.0001, 0.0031.

50th percentile TTI dccrit= +e 0 29097 0 01380. .p pIILHL( ) ( . )7 38

RMSE = 28.3%; alpha level of coefficients: <0.0001, 0.0015.

10th percentile TTI dccrit= +e 0 07643 0 00405. .p pIILHL( ) ( . )7 39

RMSE = 15.2%; alpha level of coefficients: 0.0081, 0.0748.

Midday (11:00 a.m. to 2:00 p.m., Weekdays)

mean TTI dccrit= ( )e 0 02599 7 40. ( . )p

RMSE = 7.5%; alpha level of coefficient: <0.0001.

99th percentile TTI dccrit= ( )e 0 19167 7 41. ( . )p

RMSE = 33.4%; alpha level of coefficient: <0.0001.

95th percentile TTI dccrit= ( )e 0 07812 7 42. ( . )p

RMSE = 21.8%; alpha level of coefficient: <0.0001.

80th percentile TTI dccrit= ( )e 0 02612 7 43. ( . )p

RMSE = 9.2%; alpha level of coefficient: <0.0001. 

50th percentile TTI dccrit= ( )e 0 01134 7 44. ( . )p

RMSE = 21.8%; alpha level of coefficient: <0.0001.

10th percentile TTI dccrit= ( )e 0 00389 7 45. ( . )p

RMSE = 5.1%; alpha level of coefficient: <0.0016.

Weekday

mean TTI
dc ILHLaverage= +( )e

0 00949 0 00067
7

. .
(

p p
.. )46

RMSE = 29.3%; alpha level of coefficients: <0.0001, 0.0051.

99th percentile TTI
dcaverage= +

e
0 07028 0 002. .p 222

7 47
pILHL( ) ( . )

RMSE = 38.9%; alpha level of coefficients: <0.0001, 0.0261.

95th percentile TTI
dcaverage= +

e
0 03632 0 002. .p 882

7 48
pILHL( ) ( . )

RMSE = 31.8%; alpha level of coefficients: <0.0001, 0.0007.

80th percentile TTI
dcaverage= +

e
0 00842 0 001. .p 117

7 49
pILHL( ) ( . )

RMSE = 14.7%; alpha level of coefficients: 0.0004, 0.0023.

Table 7.6. Summary Statistics for the Statistical Analysis

Time Slice

Section Years  
No. of 

Observations

Mean

dccrit

Annual Incident

Lane 
Hours Lost

TTI

Average 95th Percentile

Peak period 85 1.98 18.11 1.53 2.41

Peak hour 70 0.86 5.69 1.62 2.50

Midday 91 2.13 13.15 1.06 1.21

Weekday 89 11.98 67.91 1.16 1.84

Note: midday = 11:00 a.m. to 2:00 p.m., weekdays.
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50th percentile TTI
dcaverage= ( )e

0 0021
7 50

.
( .

p
))

RMSE = 4.7%; alpha level of coefficients: <0.0001.

10th percentile TTI
dcaverage= ( )e

0 00047
7 5

.
( .

p
11)

RMSE = 2.0%; alpha level of coefficients: 0.0121.

where
 dccrit =  critical demand-to-capacity ratio on the 

study section (i.e., highest d/c ratio for all 
links on the section),

 dcaverage =  average d/c ratio on the study section (i.e., 
the mean of the d/c ratio for all the links on 
the section),

 ILHL =  annual lane hours lost due to incidents that 
occur within the time slice of interest (e.g., 
the peak period), and

 Rain05Hrs =  hours in the year during which rainfall is 
≥0.05 inches that occur within the time slice 
of interest.

Several interaction terms involving volume or d/c ratio 
with event characteristics were also tried, but they failed to be 
significant in the regressions. It was expected that these terms 
would be important determinants of reliability, especially 
given the results of the exploratory research showing the 
strong effect of volume. However, it must be remembered that 
the models do not attempt to predict congestion on any given 
day, when these interactions are very likely to be significant. 
Rather, over the course of a year (over which reliability is 
determined), the interaction affects appear to be negligible.

Similarly, there were not enough cases of extreme or rare 
weather events (e.g., fog, snow) in the data to influence the 
annual summary metrics in a statistical sense. In the case of 
winter weather, unless the precipitation is unexpected, 
demand is likely to be lower as travelers forego trips or seek 
transit service. On an individual day, however, there is no 
denying that such events exert a strong influence on conges-
tion. The predictive equations balance these variations by 
relying on a relatively common weather event, hourly rain-
fall ≥0.05 inches, to explain weather effects on annual 
reliability.

For reasons discussed above, the lane hours lost factor was 
limited to those related to incidents. The study sections were 
all located on high-volume, multilane roadways with signifi-
cant congestion. Work zones during peak times were very 
likely not to involve lane closures, as it is common practice to 
keep all lanes open during the peak periods and to close them 
during off-peak times. Also, the coding of work zones, espe-
cially changes in lane closures over their duration, was found 
to be inconsistent in the data sets. Work zones are also rare 
events in general; some sections will have little or no work 
activity during a year, but incidents happen continuously. 

Finally, long-term work zones involving continuous lane clo-
sures will shift demand away from the facility. For these rea-
sons, making a statistical connection with work zone–related 
lane closures proved difficult. However, the team still believes 
that lane closures due to short-term work zones are roughly 
equal to incidents in their effect on traffic. For this reason, it 
is recommended that if short-term work zones close lanes 
during peak periods, then an estimate of the annual lane 
hours lost due to them should be made and added to the 
ILHL factor used in the equations. Table 7.7 presents several 
analysis of variance statistics from the model development.

It is revealing that the midday models do not include the 
effect of either incidents or rain. Midday periods typically 
show reduced demand and little overall congestion. The fact 
that events do not show up as statistically relevant may indi-
cate that demand (volume) is low enough that there is enough 
buffer to absorb the effect of most events.

The importance of demand and capacity to predicting 
reliability measures cannot be overstated. Examination of 
the Type I (sequential) and Type III (marginal) sums of 
squares for the peak models reveals the relative contribution 
of the independent variables. Type I sums of squares esti-
mate the contribution of adding the variables in sequence. 
Type III sums of squares show the additional contribution 
of a variable given that the other variables are already in the 
model. Higher values indicate greater contribution to the 
model’s explanatory power. For the 80th, 95th, and 99th per-
centile TTIs, the Type III sums of squares all show that the 
marginal contribution of the d/c ratio is higher than the other 
factors.

Second-Stage Models

Estimating D/C Ratio

The demand used in developing the models was the volume 
that occurred for the entire length of the study period, 
adjusted for any potential queuing affects as discussed in 
Chapter 4. Because the data were continuously collected for 
an entire year, the 99th percentile demand volume was 
selected. This was done to correspond to the usual way that 
traffic data are developed for highway capacity analysis, as 
follows. For the peak hour, the 99th percentile demand vol-
ume is close to the volume determined by the traditional 
K-factor, the 30th-highest hour of the year. Table 7.8 shows a 
comparison of these values for detectors (stations) in Atlanta 
for 2008. Note that the 99th percentile hourly volume was 
taken from a distribution of the actual peak hour volumes 
(nonholiday weekdays) for the year; that is, it was developed 
from all weekdays. The 30th-highest hourly volumes (K-factor 
volumes) are derived in the usual way by rank ordering all 
hours in the year.
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The lengths of the time periods differ: the peak hour is 1 hour 
long, the midday period is 3 hours long (11:00 a.m. to 2:00 p.m.), 
and the peak period is variable as defined in Chapter 4. To 
develop demand volume, users should rely on local data to the 
extent possible, using the guidance above. In the absence of local 
data, the following default procedure is offered, based on the 
assumption that the 99th percentile of the peak hour volumes 
is equivalent to the K-factor volumes. Figure 7.15 shows the 
relationship between peak period d/c and the product of peak 
hour d/c times the length of the peak period assembled from the 
urban freeway study sections. A linear regression was performed 
on the data and produced the following equation:

d c d c peak period length
pp ph

( ) = ( ){ }p p 0 01648. (77 52. )

where
 (d/c)pp = peak period d/c,
 (d/c)ph = peak hour d/c, 
 (d/c)ph =  peak hour volume to capacity (usually 

developed from travel demand fore-
casting models or by applying K- and 
D-factors to AADT), and

 peak period length =  length of peak period (min; see Chap-
ter 4).

The maximum peak period length in the data was 200 min-
utes. Therefore, it is recommended that this equation be used 
only for peak period lengths up to 200 minutes.

The peak hour volume-to-capacity (v/c) ratio is computed 
either from empirical (factored daily traffic) data or model 

Table 7.7. Analysis of Variance Statistics for Peak Models

Model Dependent Variable Independent Variable Type I SS Type III SS

Peak period Mean TTI d/c 13.16 0.97

ILHL 1.40 1.18

HrsRain05 0.20 0.20

Median TTI d/c 9.54 1.66

ILHL 1.47 1.47

80th Percentile TTI d/c 25.51 2.02

ILHL 2.39 1.99

HrsRain05 0.40 0.40

95th Percentile TTI d/c 53.54 5.58

ILHL 2.97 2.38

HrsRain05 0.78 0.78

99th Percentile TTI d/c 96.56 11.59

ILHL 3.27 2.42

HrsRain05 1.58 1.58

Peak hour Mean TTI d/c 14.22 0.86

ILHL 0.65 0.50

HrsRain05 0.21 0.21

Median TTI d/c 11.66 2.46

ILHL 0.87 0.87

80th Percentile TTI d/c 29.17 7.87

ILHL 1.09 1.09

95th Percentile TTI d/c 49.60 4.37

ILHL 0.89 0.62

HrsRain05 0.56 0.56

99th Percentile TTI d/c 102.60 37.17

ILHL 0.71 0.71

Note: SS = sums of squares.
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Station ID

Hourly Volume

99th Percentile 30th Highest Ratio

200511 8,558 7,756 0.91

200512 6,115 5,698 0.93

200516 8,067 7,697 0.95

200517 8,095 7,600 0.94

200520 2,524 2,986 1.18

750502 11,931 11,278 0.95

750503 14,848 14,385 0.97

750505 11,377 11,631 1.02

750506 11,210 11,612 1.04

750508 12,119 11,987 0.99

750509 11,795 11,955 1.01

750510 8,939 9,542 1.07

750511 9,325 10,020 1.07

750512 8,613 8,907 1.03

750513 9,298 9,435 1.01

750515 8,446 8,730 1.03

750516 8,548 8,833 1.03

750517 6,791 6,342 0.93

750518 9,904 9,864 1.00

750519 10,012 10,001 1.00

750520 10,457 10,188 0.97

750521 10,081 10,037 1.00

750522 9,582 9,296 0.97

750523 7,846 7,490 0.95

750524 9,882 9,646 0.98

750526 6,930 6,968 1.01

751472 5,706 6,439 1.13

751473 5,872 6,073 1.03

751475 8,458 8,209 0.97

751476 8,176 8,184 1.00

751477 8,327 8,181 0.98

751479 9,380 9,805 1.05

751480 10,096 9,510 0.94

751481 9,000 9,669 1.07

751482 9,390 9,476 1.01

751484 9,750 10,185 1.04

751486 9,880 9,926 1.00

751487 9,775 10,075 1.03

751488 9,873 9,648 0.98

751491 12,394 12,369 1.00

751495 14,396 14,027 0.97

751496 12,494 12,551 1.00

2850002 4,110 3,880 0.94

2850003 8,028 7,945 0.99

2850004 12,823 12,634 0.99

2850005 10,688 10,585 0.99

2850008 9,552 9,129 0.96

2850009 9,649 9,290 0.96

2850010 10,308 10,094 0.98

2850011 10,270 10,069 0.98

2850012 10,063 9,935 0.99

2850013 10,112 10,015 0.99

2850014 12,370 12,046 0.97

2850015 10,309 10,048 0.97

2850016 10,345 10,077 0.97

2850017 8,897 8,684 0.98

2850020 6,813 6,880 1.01

2850021 8,399 9,692 1.15

2850023 9,529 9,257 0.97

2850024 7,736 8,314 1.07

2850025 8,307 8,589 1.03

2850026 9,402 9,820 1.04

2850028 7,930 9,056 1.14

2850029 7,911 8,384 1.06

2850031 8,020 8,707 1.09

2850032 7,935 8,503 1.07

2850033 8,256 8,748 1.06

2850034 8,233 8,960 1.09

2850035 8,786 9,633 1.10

2850036 9,130 9,348 1.02

2850042 3,705 3,983 1.08

2851004 4,457 4,796 1.08

2851005 5,204 5,330 1.02

2851006 8,343 8,027 0.96

2851007 11,484 11,980 1.04

2851008 13,046 13,553 1.04

Station ID

Hourly Volume

99th Percentile 30th Highest Ratio

Table 7.8. Comparison of 99th Percentile Hourly Volumes and K-Factor Volumes

(continued on next page)
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output. Using the HCM to calculate hourly capacity, a typical 
way to compute the v/c ratio from empirical data is

v c AADT -factor -factor hourly capacity= ( )p pK D (77 53. )

where
 AADT = annual average daily traffic,
 K-factor = 30th-highest hour of traffic in a year, and
D-factor =  directional split of traffic in the 30th highest 

hour.

The weekday and midday (11:00 a.m. to 2:00 p.m.) time 
periods also use the 99th percentile demand volume. Local 
values for these are preferred, but if these are not available, 
then the following factors developed from the Atlanta study 
sections can be used:

99th percentile weekday demand AADT= p1 251 7. ( .554)

99th percentile midday demand AADT= p 0 234 7 5. ( . 55)

Capacity in the d/c ratio was defined in the analysis as the 
hourly capacity determined according to HCM methods. 
Capacity should include the effect of weaving sections and 
merge areas, as appropriate.

Estimating Lane Hours Lost

Total (annual) lane hours lost is the sum of lane hours lost 
due to incidents (ILHL) and work zones. Work zone lane 
hours lost must be estimated with local knowledge of the 
extent and characteristics of planned work zones. Incident 
lane hours lost are calculated as follows:

ILHL number incidents lanes blocked inciden= p p tt duration

( . )7 56

ILHL incident rate VMT= p ( . )7 57

where
 number incidents =  number of annual incidents (incident 

rate and VMT should be computed 
for the particular time slice under 
study, e.g., the peak period);

 lanes blocked =  number of lanes blocked per incident;
 incident duration =  average incident duration (hours), 

defined as the time between when the 
incident started and when the last lane 
or shoulder is cleared; and

 VMT = vehicle miles traveled.

If incident rate is unavailable locally, it can be estimated by 
multiplying the crash rate by 4.545, which assumes that 
crashes are 22% of all incidents; this factor was developed 
from analyzing the incident data in the analysis data set.

If lanes blocked per incident is unavailable locally, it can be 
estimated using the following factors, developed from 2 years 
of incident data from Atlanta:

•	 0.476 if a usable shoulder is present and it is local policy to 
move lane-blocking incidents to the shoulder as rapidly as 
possible. A usable shoulder is capable of safely storing the 
disabled vehicle and emergency vehicles (this is the policy 
in Atlanta);

Station ID

Hourly Volume

99th Percentile 30th Highest Ratio

2851009 9,424 9,916 1.05

2851010 8,815 8,831 1.00

2851011 11,198 11,305 1.01

2851012 11,023 11,141 1.01

2851013 11,389 10,942 0.96

2851014 10,371 10,352 1.00

2851015 11,536 10,472 0.91

2851016 10,581 10,564 1.00

2851018 12,597 12,155 0.96

2851020 10,428 10,278 0.99

2851021 9,930 9,743 0.98

2851022 11,255 11,096 0.99

2851023 9,545 8,975 0.94

2851026 12,935 13,354 1.03

2851027 8,847 10,051 1.14

2851028 9,190 9,746 1.06

2851029 9,879 10,410 1.05

2851030 9,842 9,817 1.00

2851031 9,131 9,647 1.06

2851033 8,118 7,999 0.99

2851034 10,065 10,960 1.09

2851035 9,107 9,673 1.06

2851036 8,440 8,899 1.05

2851037 8,451 8,925 1.06

2851038 8,441 9,101 1.08

2851039 9,017 9,402 1.04

2851041 9,123 8,579 0.94

2851043 3,687 3,815 1.03

Average 1.01

Table 7.8. Comparison of 99th Percentile 
Hourly Volumes and K-Factor Volumes 
(continued)
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•	 0.580 if lane-blocking incidents are not moved to the 
shoulder. This factor was developed by considering lane-
blocking incidents that were moved to the shoulder, and 
reassigning them back to lane-blocking status; and

•	 1.140 if usable shoulders are unavailable.

Average incident duration is largely a function of incident 
management policies and actions. However, a statistical rela-
tionship from the data available proved elusive. The team had 
originally hoped to use Traffic Incident Management Self-
Assessment scores as a way of quantitatively capturing the 
myriad of factors that comprise incident management pro-
grams, but these scores were available for only a few of the 

locations. As a means of guidance to practitioners, Table 7.9 
provides peak period incident characteristics of the study 
locations.

Estimating Hours of Rainfall ≥0.05 Inches

The National Weather Service maintains hourly records of 
weather conditions that should be used to calculate this factor.

Graphical Display of Equations

Figures 7.16 through 7.18 graphically show the behavior of 
selected equations for predicting the 95th percentile TTI.

Figure 7.15. Predicting peak period d/c ratio.

Table 7.9. Peak Period Incident Characteristics  
for Study Locations

Urban Area

Average 
Incident 

Durationa (min)

Quick-
Clearance 

Law

PDO-Move-
to-Shoulder 

Law

Fatality Removal 
Without Medical 

Examiner

Atlanta 43.5 Yes Yes Yes

Houston 43.2 Yes Yes Yes

Jacksonville 32.1b Yes Yes Yes

Los Angeles 51.5 No Yes No

Minneapolis 47.3 No No No

San Diego 52.0 No Yes No

Note: PDO = property damage only.
a  Average incident duration is defined as the time between when the incident started and when the 
last lane or shoulder is cleared.
b  End time is defined as when the lane is cleared (incident may still be active on shoulder).
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congestion is high (e.g., mean TTIs greater than 2.5). Low 
congestion during the peak period was rare in the data on 
which the models were fit, so a recommendation for their 
application would be to apply the peak period models only in 
situations in which at least a modest amount of congestion 
exists. (The rainfall factor was set to 4 hours for peak hour 
and 8 hours for the peak period.)

For weekdays (all 24 hours), the models tended to under-
predict Seattle conditions, especially the 95th percentile TTIs. 
This may be due to the lack of a weather or rain variable in the 
weekday models, which proved to be insignificant for the 
model data set, but rain was shown in Chapter 5 to be an 

Validation of Statistical Models

Data from the Seattle area, which were used in the congestion 
by source analysis in Chapter 5, were used to validate the sta-
tistical models. Travel time metrics and lane hours lost infor-
mation were compiled directly from Seattle detector data and 
the Seattle incident data base, respectively. Data on demand 
and capacity were compiled from Highway Performance 
Monitoring System data for the Seattle study sections.

The results appear in Tables 7.10 and 7.11. For peak peri-
ods, the models tend to overpredict the key metrics when 
actual congestion is fairly low and underpredict when actual 

95th percentile TTI = e(0.63071*dccrit + 0.01219*ILHL +
0.04744*Rain05Hrs)

Figure 7.16. Effect of incident lane hours lost, peak hour equations.

95th percentile TTI = e(0.23233*dccrit + 0.01222*ILHL +
0.01777*Rain05Hrs)

Figure 7.17. Effect of incident lane hours lost, peak period equations.
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Table 7.10. Peak Period Model Validation for Seattle

Section

Mean TTI 80th Percentile TTI 95th Percentile TTI

Actual Predicted Error (%) Actual Predicted Error (%) Actual Predicted Error (%)

I-405 Bellevue northbound 1.346 1.810 34.5 1.507 2.301 52.7 2.314 3.369 45.6

I-405 Eastgate northbound 1.667 1.835 10.0 1.981 2.372 19.7 2.720 3.740 37.5

I-405 Eastgate southbound 2.728 1.955 -28.4 3.227 2.575 -20.2 4.209 4.091 -2.8

I-405 Kennydale southbound 1.898 1.677 -11.6 2.313 2.077 -10.2 3.376 2.958 -12.4

I-405 Kirkland northbound 1.995 2.019 1.2 2.408 2.640 9.6 3.132 3.827 22.2

I-405 Kirkland southbound 1.766 1.748 -1.0 2.147 2.189 2.0 2.673 3.119 16.7

I-405 North northbound 1.609 1.654 2.8 1.876 2.031 8.3 2.236 2.822 26.2

I-405 North southbound 2.820 1.792 -36.4 4.090 2.254 -44.9 6.272 3.161 -49.6

I-405 South northbound 2.578 1.609 -37.6 3.080 1.960 -36.4 3.756 2.707 -27.9

I-405 South southbound 1.522 1.607 5.6 1.797 1.957 8.9 2.406 2.703 12.3

I-5 Everett northbound 1.872 1.976 5.5 2.777 2.570 -7.5 4.294 3.740 -12.9

I-5 Everett southbound 1.520 1.843 21.2 1.850 2.348 26.9 2.590 3.387 30.8

I-5 Lynnwood northbound 1.443 1.722 19.4 1.667 2.163 29.8 3.539 3.198 -9.6

I-5 Lynnwood southbound 1.898 1.829 -3.6 2.448 2.338 -4.5 3.968 3.481 -12.3

I-5 South northbound 1.764 2.084 18.2 2.313 2.782 20.3 3.184 4.318 35.6

I-5 South southbound 1.762 1.964 11.5 2.350 2.576 9.6 3.251 3.969 22.1

I-5 Tukwila northbound 1.502 1.819 21.1 1.811 2.054 13.4 2.582 2.840 10.0

I-5 Tukwila southbound 1.205 1.858 54.2 1.265 2.111 66.8 1.933 2.926 51.3

I-90 Bellevue westbound 1.307 1.609 23.1 1.453 1.961 35.0 1.998 2.716 35.9

I-90 Bridge eastbound 1.414 1.636 15.7 1.868 2.008 7.5 2.622 2.832 8.0

(continued on next page)

95th percentile TTI = e(0.03632*dcaverage +
0.00282*ILHL)

Figure 7.18. Effect of incident lane hours lost, weekday equations.
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Table 7.11. Weekday Model Validation for Seattle

Section

Mean TTI 80th Percentile TTI 95th Percentile TTI

Actual Predicted Error (%) Actual Predicted Error (%) Actual Predicted Error (%)

I-405 Bellevue northbound 1.186 1.130 -4.7 1.285 1.127 -12.3 1.865 1.606 -13.9

I-405 Eastgate northbound 1.177 1.177 0.0 1.232 1.158 -6.0 1.964 1.867 -4.9

I-405 Eastgate southbound 1.369 1.190 -13.1 1.399 1.181 -15.5 2.432 1.959 -19.4

I-405 Kennydale southbound 1.357 1.119 -17.5 1.642 1.113 -32.2 2.491 1.544 -38.0

I-405 Kirkland northbound 1.196 1.133 -5.3 1.123 1.146 2.1 2.227 1.633 -26.7

I-405 Kirkland southbound 1.162 1.123 -3.3 1.133 1.128 -0.4 2.000 1.572 -21.4

I-405 North northbound 1.135 1.124 -0.9 1.137 1.116 -1.9 1.784 1.568 -12.1

I-405 North southbound 1.105 1.136 2.8 1.318 1.137 -13.8 2.121 1.640 -22.7

I-405 South northbound 1.476 1.121 -24.1 1.933 1.110 -42.6 2.967 1.549 -47.8

I-405 South southbound 1.270 1.122 -11.6 1.446 1.112 -23.1 1.904 1.556 -18.3

I-5 Everett northbound 1.192 1.119 -6.1 1.031 1.129 9.5 2.514 1.553 -38.2

I-5 Everett southbound 1.054 1.122 6.4 1.012 1.134 12.1 1.216 1.570 29.1

I-5 Lynnwood northbound 1.134 1.112 -2.0 1.085 1.106 1.9 1.730 1.504 -13.1

I-5 Lynnwood southbound 1.165 1.116 -4.2 1.100 1.113 1.2 1.978 1.528 -22.7

I-5 South northbound 1.117 1.142 2.3 1.033 1.155 11.8 1.859 1.684 -9.4

I-5 South southbound 1.154 1.127 -2.3 1.061 1.129 6.3 2.123 1.592 -25.0

I-5 Tukwila northbound 1.111 1.117 0.6 1.066 1.118 4.8 1.680 1.536 -8.5

I-5 Tukwila southbound 1.060 1.114 5.1 1.043 1.112 6.6 1.207 1.517 25.7

I-90 Bellevue westbound 1.101 1.076 -2.2 1.000 1.076 7.6 1.516 1.330 -12.3

I-90 Bridge eastbound 1.118 1.078 -3.6 1.075 1.074 -0.1 1.876 1.335 -28.8

I-90 Bridge westbound 1.161 1.080 -7.0 1.053 1.078 2.4 1.547 1.346 -13.0

I-90 Issaquah westbound 1.077 1.062 -1.4 1.043 1.056 1.3 1.454 1.260 -13.4

SR 167 Auburn northbound 1.168 1.084 -7.2 1.248 1.078 -13.6 1.759 1.363 -22.5

SR 167 Auburn southbound 1.189 1.084 -8.8 1.265 1.078 -14.7 1.954 1.365 -30.1

SR 167 Renton northbound 1.201 1.093 -9.0 1.213 1.087 -10.4 1.916 1.406 -26.6

SR 167 Renton southbound 1.123 1.090 -3.0 1.144 1.083 -5.4 1.581 1.392 -12.0

Average error (%) -4.6 -4.8 -17.2

I-90 Bridge westbound 1.739 1.687 -3.0 2.608 2.091 -19.8 3.483 2.960 -15.0

I-90 Issaquah westbound 1.476 1.679 13.8 1.880 2.090 11.2 2.635 3.051 15.8

SR 167 Auburn northbound 1.685 1.615 -4.2 2.057 1.976 -3.9 2.567 2.795 8.9

SR 167 Auburn southbound 1.961 1.681 -14.3 2.693 2.082 -22.7 4.162 2.958 -28.9

SR 167 Renton northbound 1.623 1.689 4.0 1.744 2.100 20.4 3.361 3.026 -10.0

SR 167 Renton southbound 1.637 1.675 2.3 2.029 2.078 2.4 3.357 2.991 -10.9

Average error (%) 4.8 6.7 7.2

Table 7.10. Peak Period Model Validation for Seattle (continued)

Section

Mean TTI 80th Percentile TTI 95th Percentile TTI

Actual Predicted Error (%) Actual Predicted Error (%) Actual Predicted Error (%)
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95th percentile TTIs in Seattle are so much higher compared 
with their means, but this indicates that further validation of 
the models with data from other cities is warranted.

reference
1. Bahar, G., M. Masliah, R. Wolff, and P. Park. Desktop Reference for 

Crash Reduction Factors. Report No. FHWA-SA-07-015. Office of 
Safety, Federal Highway Administration, U.S. Department of Trans-
portation, September 2007.

extremely important factor in Seattle congestion. Without 
testing another city, it is not known if Seattle is an exception 
or if rainfall has a universal influence on total weekday conges-
tion. The problem may lie in the fact that Seattle weekday 
95th percentile TTIs do not behave in the same way as those 
of the other cities. Table 7.12 shows the prediction of the 
95th percentile TTI from the mean TTI using the data-poor 
model. The predicted 95th percentiles are consistently lower 
than the actual ones, yet the data-poor relationship had an 
excellent goodness-of-fit. The team is not sure why the  

Table 7.12. Application of Data-Poor Model to Seattle Weekday Data

Section Mean TTI

80th Percentile TTI 95th Percentile TTI

Actual Predicted Error (%) Actual Predicted Error (%)

I-405 Bellevue northbound 1.186 1.285 1.262 -1.8 1.865 1.379 -26.0

I-405 Eastgate northbound 1.177 1.232 1.249 1.4 1.964 1.358 -30.8

I-405 Eastgate southbound 1.369 1.399 1.536 9.8 2.432 1.807 -25.7

I-405 Kennydale southbound 1.357 1.642 1.516 -7.7 2.491 1.776 -28.7

I-405 Kirkland northbound 1.196 1.123 1.277 13.8 2.227 1.402 -37.1

I-405 Kirkland southbound 1.162 1.133 1.228 8.4 2.000 1.327 -33.6

I-405 North northbound 1.135 1.137 1.188 4.5 1.784 1.269 -28.9

I-405 North southbound 1.105 1.318 1.146 -13.0 2.121 1.207 -43.1

I-405 South northbound 1.476 1.933 1.702 -11.9 2.967 2.083 -29.8

I-405 South southbound 1.270 1.446 1.385 -4.2 1.904 1.568 -17.7

I-5 Everett northbound 1.192 1.031 1.271 23.3 2.514 1.393 -44.6

I-5 Everett southbound 1.054 1.012 1.075 6.2 1.216 1.105 -9.1

I-5 Lynnwood northbound 1.134 1.085 1.188 9.5 1.730 1.268 -26.7

I-5 Lynnwood southbound 1.165 1.100 1.232 12.1 1.978 1.334 -32.5

I-5 South northbound 1.117 1.033 1.163 12.6 1.859 1.232 -33.7

I-5 South southbound 1.154 1.061 1.217 14.6 2.123 1.311 -38.3

I-5 Tukwila northbound 1.111 1.066 1.154 8.2 1.680 1.218 -27.5

I-5 Tukwila southbound 1.060 1.043 1.083 3.8 1.207 1.116 -7.6

I-90 Bellevue westbound 1.101 1.000 1.140 14.0 1.516 1.199 -20.9

I-90 Bridge eastbound 1.118 1.075 1.164 8.3 1.876 1.233 -34.3

I-90 Bridge westbound 1.161 1.053 1.226 16.4 1.547 1.324 -14.4

I-90 Issaquah westbound 1.077 1.043 1.107 6.1 1.454 1.150 -20.9

SR 167 Auburn northbound 1.168 1.248 1.236 -1.0 1.759 1.339 -23.9

SR 167 Auburn southbound 1.189 1.265 1.267 0.1 1.954 1.385 -29.1

SR 167 Renton northbound 1.201 1.213 1.284 5.9 1.916 1.412 -26.3

SR 167 Renton southbound 1.123 1.144 1.172 2.4 1.581 1.244 -21.3

Average error (%) 5.5 -27.4
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C h a p t e r  8

Introduction

The predictive models that can be used in transportation 
modeling and analysis applications are of three kinds:

1. Adjustment factors (percentage reduction) derived from 
the before-and-after studies;

2. Relationships between the mean Travel Time Index (TTI) 
and reliability metrics (i.e., the simple or data-poor model); 
and

3. Direct prediction of reliability metrics as a function of 
demand, capacity, and disruption characteristics (i.e., the 
statistical or data-rich model).

This chapter provides general guidance on how to apply these 
relationships. Implementation of the methods within a spe-
cific application (e.g., the Highway Capacity Manual [HCM]) 
will require greater adaptation to the requirements of those 
methods.

Selecting the appropriate 
relationship

The most direct relationships developed for the impact of 
improvements on reliability are the adjustment factors from the 
before-and-after studies. However, as with adjustment factors 
for other forms of transportation analysis (e.g., safety analysis), 
care must be exercised in their application. Specifically, the base 
conditions for the before-and-after case studies should roughly 
match the conditions for the situation at hand. Therefore, the 
analyst should examine the details provided in Appendix B for 
the improvement type of interest and decide if the conditions 
of the case study are relevant. Only then can the adjustment 
factors be applied.

For many planning-level applications, the data-poor models 
can be used to generate reliability statistics. Because the rela-
tionships are based on first knowing the overall mean TTI 
(i.e., the average TTI over the course of a year that includes all 

possible sources of recurring and nonrecurring variation), ana-
lysts must identify how many nonrecurring events are included 
in the estimate of the overall TTI produced by their model. 
Usually, the overall TTI from planning models includes only 
recurring congestion, so the adjustment provided in Chapter 7 
can be used directly.

The basic response variable used in this research is the TTI. 
In some cases, analysts will want different response metrics. 
TTI can be converted to other measures if the section length 
and free-flow speed are known. TTI is the result of dividing 
the actual travel time by the travel time at the free-flow speed. 
For example, consider a section 1.5 miles long with a TTI of 
1.3. The free-flow travel time (at 60 mph, the free-flow speed 
in this research) is 1.5 minutes, and the actual travel time is 
30% higher, or 1.95 minutes. The travel rate is therefore 1.95 
divided by 1.5, or 1.3 minutes per mile.

Linking Improvements  
to Model Variables

The final stage of model application is to develop linkages 
between improvement types and the variables in the data-rich 
model. Table 8.1 presents a general discussion of how the 
improvements are to be considered and how their effects are 
to be accommodated by the models. Basically, the effect of 
improvements is traced to the changes in the independent 
variables and their determinants. Within the models, improve-
ments can affect

•	 Demand (volume for the time period considered);
•	 Capacity (physical capacity, as determined by the HCM);
•	 Lane hours lost due to incidents and work zones. Work 

zone lane hours lost must be entered directly. Incident lane 
hours lost can be entered directly or as changes to
44 Incident frequency, a function of both

4▪ Incident rate, and
4▪ Vehicle miles traveled (VMT) (demand);

Application Guidelines
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Table 8.1. General Linkages Between Improvements and Model Variables

Action to Improve Reliability Effect on Reliability Model Variable Affected

Add Capacity

Add new through lanes Increases design capacity. d/c ratio

Add other geometric improvements (lane 
widening, shoulders, and lower grades)

Increases design capacity. d/c ratio

Modify interchange (new configuration, 
longer, or additional ramps)

Increases design capacity. d/c ratio

Add or modify access control, median 
barriers

Modest design capacity increase, significant reduction in probabil-
ity of incidents (collisions).

d/c ratio; primary incident 
rate

Add managed lane (truck climbing lanes, 
high-occupancy vehicle [HOV] and 
high-occupancy toll lanes)

Increases capacity in unmanaged lanes by removing trucks, HOVs, 
toll payers from stream. Improves reliability for vehicles able to 
switch to managed lanes (d/c of managed lanes will usually be 
lower than for unmanaged lanes).

d/c ratio

Add auxiliary lanes Increases capacity by allowing nonthrough vehicles to use auxiliary 
lanes.

d/c ratio

Add new interchange Changes demand by changing access to facility; minor effect on 
design capacity.

d/c ratio

Add turn lanes Increases capacity by shifting demand out of through lanes and 
increasing design capacity of through lanes.

d/c ratio

Convert two-way to one-way streets Reduces demand by shifting one direction of demand to other 
streets. Increases design capacity for remaining allowed 
direction.

d/c ratio

Add safety improvements (median barriers, 
eliminate visual obstructions, lighting, 
and wider lanes)

Reduces likelihood of collisions and reduces incident frequency. Primary crash rate

Operational Improvements

Incident Management

Improved equipment for incident detection 
and verification (CCTV)

Reduces incident duration. Average incident duration

Improved interagency communications 
for incident detection and verification

Reduces incident duration. Average incident duration

Improved equipment and service for 
incident response

Reduces incident duration. Average incident duration

Improved interagency incident manage-
ment coordination

Reduces incident duration. Average incident duration

Improved responder training Reduces incident duration. Average incident duration

Incident command system Reduces incident duration. Average incident duration

Crash investigation sites Reduces lane blockage. Shoulder usability factor  
(in the lanes blocked per 
incident calculation)

Weather Management

More effective deployment of snow and 
ice resources

Reduces impact of weather events on pavement and crashes. Capacity reduction not as 
severe; primary crash rate

Snow and ice pretreatment Reduces impact of weather events on pavement and crashes. Capacity reduction not as 
severe; primary crash rate

(continued on next page)
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Action to Improve Reliability Effect on Reliability Model Variable Affected

Weather Management (continued)

Microlevel weather forecasting Reduces impact of weather events on pavement and crashes. Primary crash rate

Weather monitoring Reduces crash rates due to better traveler information. Primary crash rate

Fog warning system Reduces crash rates due to better traveler information. Primary crash rate

Work Zone Management

Scheduling (accelerated schedules, night 
time activities)

Reduces work zone duration. Work zone duration

Use of more durable materials Reduces frequency of work zone occurrence. Work zone duration

Improved signing Increases design capacity; decreases crashes. d/c ratio; primary crash rate

Increased enforcement Decreases crashes. Primary crash rate

Full road and lane closures Decreases design capacity but reduce work zone duration. d/c ratio; work zone duration

Traffic control plan development Increases design capacity. d/c ratio

Active Traffic Management

Traffic signal coordination More green time; responsive cycle increases capacity. d/c ratio

Traffic adaptive signal control Through capacity is increased as demand increases. d/c ratio

Ramp metering (fixed time, traffic 
responsive)

Increases design capacity. d/c ratio

Integrated corridor management Problematic; current FHWA research may reveal impacts; probably 
reduces demand and/or increases capacity (d/c).

Traveler information system improve-
ments (pretrip, roadside, and 
in-vehicle)

Problematic; probably reduces demand. d/c ratio

Variable speed limits Increases design capacity. d/c ratio

Lane controls Increases design capacity. d/c ratio

Queue warning Increases design capacity. d/c ratio

Truck lane restrictions Increases design capacity of nontruck lanes. d/c ratio

Hard shoulder running during peak Increases design capacity, but also increases incident impacts. d/c ratio; shoulder usability 
factor

Access management Increases design capacity. d/c ratio

Traveler Information

511 Reduces demand on event-stricken facilities. d/c ratio

Variable message signs (VMS) Reduces demand on event-stricken facilities. d/c ratio

In-vehicle guidance Reduces demand on event-stricken facilities. d/c ratio

Demand Management

Telecommuting Reduces demand. d/c ratio

Alternative work hours Shifts demand (changes temporal traffic distribution). d/c ratio

Land use controls Reduces demand. d/c ratio

Road pricing Reduces demand on priced facility. d/c ratio

Parking pricing Reduces demand. d/c ratio

Shifts to nonauto modes Reduces demand. d/c ratio

Table 8.1. General Linkages Between Improvements and Model Variables (continued)
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44 Lanes blocked per incident, a function of
4▪ Presence of shoulders, and
4▪ Local policy concerning moving lane-blocking inci-
dents to the shoulder; or

•	 Average incident duration.

Improvements or strategies that affect demand are accounted 
for twice in the model: in the demand-to-capacity (d/c) ratio 
and in the incident frequency calculations.

The research team also undertook a review of recent studies 
of reliability improvements. Although none of them deal 
directly with estimating reliability, they can still be used in the 
modeling framework presented above (Tables 8.2 through 8.4). 
In some cases, a recommendation has been provided on how 
to adapt these results to the modeling framework. In others, the 
team has not provided a recommendation, but the results are 
presented because some practitioners might find them useful. 
As new research becomes available, especially other SHRP 2 

Table 8.2. Incident Management Impacts

Improvement Impact

Improving from no formal IM program to a program that 
includes detection, verification, and service patrols

Atlanta—Average time between first report and incident verification reduced  
by 74%. 

Average time between verification and response initiation reduced by 50%.
Average time between incident verification and clearance of traffic lanes reduced 

by 38%. 
Maximum time between incident verification and clearance of traffic lanes 

reduced by 60% (1).

Houston—Average 30-minute incident duration reduction (2).

RECOMMENDATION IDAS model recommends a default reduction in incident duration of 9% for incident 
detection, 39% for incident response systems, and 51% for combination incident 
detection and response systems (3).

Georgia (NaviGAtor)—Incident clearance time reduced by an average of 23 min-
utes. Incident response time reduced by 30% (4).

Maryland (CHART)—Blockage duration from incidents reduced by 36%. This 
translates to a reduction in highway user delay time of about 42,000 hours per 
incident (5).

15% to 38% reduction in all secondary crashes, 4% to 30% reduction in rear-end 
crashes, and 21% to 43% reduction in severe secondary crashes (4).

RECOMMENDATION Based on CHART, reduce incident lane hours lost by 36%.

Improved equipment for incident detection and verification 
(CCTV)

Brooklyn—Average time required to clear incident from roadway reduced by 
66% (6).

San Antonio (TransGuide)—20% improvement in response time (21% reduction 
for major incidents and 19% for minor incidents) (7).

RECOMMENDATION Based on TransGuide and assuming that incident response time is 20% of incident 
duration time, reduce incident duration by 4%.

Improved interagency communications for incident detec-
tion and verification

Minneapolis–St. Paul (Highway Helper)—Automatic tow truck dispatch program 
is credited with a 20-minute reduction in incident response and removal times 
(85% improvement) (8).

RECOMMENDATION Assuming that response time is 20% of incident duration time, reduce incident 
duration by 17%.

Improved equipment and service for incident response Hayward, California—38% reduction in incident duration, 57% reduction in 
breakdown duration (9).

Northern Virginia—Reduction in duration for all incidents is 2 to 5 minutes for cell 
phone in response vehicles, 2 to 5 minutes for CAD screens in response vehicles, 
and 4 to 7 minutes for GPS location for response vehicles (10).

Oregon—Duration of delay-causing incidents decreased by approximately 30% 
on Highway 18 and 15% on Interstate 5 (service patrol addition) (11).

Pittsburgh—Service patrol reduced response time to incidents from 17 to  
8.7 minutes (12).

Washington State—Average freeway incident clearance time for large trucks 
reduced to 1.5 hours from 5 to 7 hours without incident response team (13).

RECOMMENDATION For implementation of service patrols, reduce incident duration by 38%.
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research projects currently underway, their results can be 
adapted to the modeling framework in a similar manner.

relationship Between Incident 
Management efficiency  
and Model Variables

The incident management factors in Table 8.2 relate primar-
ily to the technological (physical) aspects of incident manage-
ment (i.e., equipment deployed to detect, verify, and respond 
to incidents). However, effective incident management depends 
not only on equipment but how efficiently the equipment is 
used and how well responders work together on the incident 
scene; institutional arrangements and programmatic aspects 
will determine the level of efficiency. Although it is thought 
that these attributes influence incident duration, quantifying 
them for inclusion in a statistical model is a challenging task. 
Originally it was thought that Traffic Incident Management 
Self-Assessment scores, which rank the level of sophistication 
and/or aggressiveness of incident management programs, 
could be used for this purpose.

However, these self-assessment scores were available from 
only three of the cities used in the urban freeway analysis. A 
few other key aspects of incident management programs were 
identified; these were available for six locations. Table 8.5 

presents the results; cities are not identified because to obtain 
this information the research team had to maintain anonym-
ity. There appears to be a loose relationship between self-
assessment scores and incident duration: higher scores, which 
indicate greater sophistication or aggressiveness, generally 
correspond to lower incident duration. However, the sample 
size here is so small that it is impossible to say with certainty 
that a mathematical relationship exists. These limited results 
do suggest that additional work including many more loca-
tions is warranted.

Induced Demand effects  
of Improvements

It has long been observed that transportation improvements 
that reduce travel times, especially those related to capacity 
expansion, become victims of their own success: lower travel 
times spur increased demand for the improved facility. This 
phenomenon, known as induced demand, has both short-run 
and long-run components. In the short run, trips will divert 
from nearby congested facilities to take advantage of the new 
lower travel times, and travelers who previously avoided a 
congested peak period will be drawn back to the peak. In the 
long run, reductions in travel time are thought to increase the 
amount of travel (VMT) as lower congestion allows both 

Table 8.3. Weather Management Impacts

Improvement Impact

More effective deployment of snow and ice resources Idaho DOT, U.S. Route 12—Mobile anti-icing operations reduced average 
winter accident frequency by 83% compared with the past 3 years (14).

Snow and ice pretreatment Finland (Finnish National Road Administration)—Duration of slippery road 
conditions estimated to decrease by 10 to 30 minutes per deicing activity, 
decreasing the chance for accidents caused by slipperiness. Estimated 
average time saved was 23 minutes per deicing activity (15).

Minneapolis, I-35W and Mississippi River Bridge—2000–2001 season 
had a 50% reduction in total number of crashes over comparison season 
(1996–1997), even with an increase in average daily traffic of 9.3% (16).

Microlevel Weather Forecastinga

Weather monitoring Idaho Storm Warning System—Mean speeds in southbound lanes drop 
from 47.0 mph without dynamic message signs (DMS) to 41.2 mph with 
DMS warnings (~12% reduction). When high winds occurred with snow-
covered pavement, mean speeds in southbound lanes dropped 35% from 
54.7 mph to 35.4 mph compared with a 9% decline from 48.4 to 44.1 mph 
in northbound lanes (17).

Fog warning system London Orbital Motorway, M25—Fog messages were followed by a statis-
tically significant overall net reduction in mean vehicle speeds of about 
1.8 mph. (18).

Utah Fog Warning System, I-215—Average vehicle speed measured during 
fog events increased from 54 to 62 mph after system was deployed. 
Speed increase was partly attributable to reduction in the number of 
excessively slow drivers during fog events (19).

Salt Lake Valley—15% increase in speeds and 22% decrease in standard 
deviation of those speeds under foggy conditions (20).

a No recommendations made for weather strategies’ impacts on reliability.
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longer and more trips to be made. Longer trips can result from 
the location decisions for place of residence and business. The 
converse is that congestion suppresses these aspects of travel.

Short-run induced demand can be studied via travel demand 
models that account for diversion of traffic from parallel facili-
ties to an improved highway, shifts of travelers from other 
modes, and (depending on how the models are applied) the 
role of improved highways in causing people to shift the desti-
nations of their trips. However, the models usually do not 
account for the effects of highway improvements on the total 
number of trips made and shifts in the locations of households, 
businesses, and other activities.

In previous studies, the induced demand effect has been 
quantified as elasticities of VMT with respect to highway 
travel time or lane miles. Travel time elasticities have been 
used in sketch planning analyses to estimate the aggregate 

response of travelers to transportation system improvements 
that provide time savings. The elasticities indicate the per-
centage change in VMT expected to result from a 1% change 
in travel time or lane miles. Cohen provided a summary of 
these studies (Table 8.6) (27). The results of Barr and Gorina 
are especially relevant because of the use of travel time as the 
causal factor. Their elasticities were in the -0.1 to -0.4 range, 
indicating that a 10% decrease in travel rate would cause a 1% 
to 4% increase in household VMT. These increases in VMT 
include the effects of modal diversion, trip distribution (in 
this case, substituting longer trips for shorter trips), and 
increases in the total number of person trips made.

For an individual facility, it would be expected that time sav-
ings would cause a greater increase in VMT than those sug-
gested by the above elasticities. VMT increases occur because 
traffic increases on individual facilities include not only the 

Table 8.4. Active Traffic Management Impacts

Improvement Impact

Traffic signal coordination Phoenix—6.2% to 8% average increase in trip speeds (21).

IDAS model uses a capacity increase of 14 to 20%. Actual increase value is sensitive to traffic variability and 
frequency of retiming (3).

RECOMMENDATION Decrease mean TTI by 7%.

Traffic adaptive signal control Los Angeles (ATSAC)—Travel time reduced by 12% to 18%, delay reduced by 44%, speed increased by 16% (22).

Minneapolis (SCOOT)—Installation in 56 intersections showed 19% reduction in delay during special events, 
8% during peaks (12).

Oakland County, Michigan (SCATS)—Corridor travel time reduced from 7% to 32% over optimized fixed-time 
signal control. Average travel time reduction of 8% (average speed increased from 25 to 27 mph) (12).

IDAS model recommends a default capacity increase of 8 to 14%. Actual increase value is sensitive to traffic 
variability. Assumes upgrade from coordinated preset timing (3).

Dallas (North Central Expressway)—15% increase in speed, 15% decrease in delay (23).

RECOMMENDATION Reduce mean TTI by 12%.

Ramp metering (fixed time) Portlan, Oregon—25% increase in volume (24).

Portland, Oregon—43% reduction in peak period accidents (13).

Houston—29% increase in speed (25).

IDAS model uses a default mainline capacity increase of 9.5% offset by a ramp capacity decrease of 33%. 
IDAS also suggests a reduction in accidents of 30% on ramp and adjacent freeway links (3).

Minneapolis–St. Paul—14% average increase in throughput, 7% increase in corridor speed, 26% decrease in 
peak period accidents (26).

Denver—19% increase in volume (24).

Seattle (I-405 in 1997)—5% to 6% increase in volume (24).

IDAS model uses a default mainline capacity increase of 13.5% offset by a ramp capacity decrease of 28%. 
IDAS also suggests a reduction in accidents of 30% on ramp and adjacent freeway links (3).

RECOMMENDATION Based on the Seattle before and after study presented in Chapter 6, use the following adjustments: 11% reduction 
in average travel time and 12% reduction in Planning Time Index.

VMS/DMS Austin—7% to 12% reduction in upstream lane volumes of an incident (13).

RECOMMENDATION For peak hour and peak period only, reduce demand volume by 3.5% (assumes 9% reduction in volumes during 
an incident and that incidents comprise 40% of total delay).
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three effects noted above (modal diversion, trip distribution, 
and trip frequency), but also route diversion (in which travel-
ers shift the routes they use but do not alter their origins or 
destinations).

These previous studies considered only changes in average 
travel times and did not include the effect of reliability on 
induced demand. However, it has been noted that travel time 
reliability has additional value to travelers beyond consider-
ation of average or typical conditions (28). To the extent this 
is true, improvements in reliability may have an additional 
effect on induced demand. One approach to this issue may be 
to convert reliability improvements to equivalent travel time 
units. For example, Bates et al. measured variability as the 
standard deviation of travel time and found the value of vari-
ability reductions to be equal to 0.8 to 1.3 times the value of 
mean travel time reductions (29). Brownstone and Small 

measured variability as the difference between the 90th and 
50th percentile travel times and found the value of variability 
reductions to be roughly equal to the value of mean travel 
time reductions (30).

However, the merit of adding a reliability factor to changes 
in mean travel time may be dubious. If elasticities are based 
on empirical data collected over a sufficiently long period of 
time so that they include the effect of disruptions, then add-
ing a reliability factor would be double counting. That is, to 
the extent that observed travel times are overall mean travel 
times that include both recurring and nonrecurring sources, 
then the relationships identified in Chapter 7 indicate that 
an improvement in the overall mean also means that reli-
ability has improved. If this is the case, then the reliability 
effect is already embedded in the observed increases in travel 
activity.

Table 8.5. Institutional and Programmatic Characteristics on Incident Management Programs  
in Study Locations

Urban  
Area

Traffic Incident Management Self-Assessment

Quick-
Clearance 

Law

Property 
Damage Only 

Move-to-
Shoulder Law

Can a Fatality Be 
Moved with 

Medical Examiner 
Present?

Average Peak 
Period 

Incident 
Duration (min)

Overall 
Score

Programmatic 
and 

Institutional Operational
Communications 
and Technology

1 85.9 27.5 32.1 26.3 Yes Yes Yes 32.1

2 82.0 25.5 32.1 24.4 Yes Yes Yes 43.5

3 74.0 21.3 29.3 23.4 Yes Yes Yes 45.0

4 NA NA NA NA No No No 47.3

5 NA NA NA NA No Yes No 52.0

6 NA NA NA NA No Yes No 61.5

Note: NA = not available.

Table 8.6. Summary of Elasticities Used for Induced Demand (27)

Change in Long-Run 
VMT Elasticity (%)

Study Primary Data Source Travel Time Lane Miles Comment

Barr and Gorina 1990 and 1995 Nationwide 
Personal Transportation 
Survey (NPTS)

-0.3 to -0.5 NA Elasticities may be overstated because of the tendency for  
longer trips to have higher average speeds than shorter trips. 
Reanalysis suggests elasticities of -0.1 to -0.4.

SACTRA Fuel price elasticities -1.0 NA Elasticity may be overstated because of differences in opportuni-
ties available to motorists to reduce travel time and fuel costs.

Noland Highway statistics NA -0.8 Elasticity may be overstated because (a) of shifts of VMT and 
lane miles among highway systems and (b) highways that are 
widened have more VMT/lane mile than other highways.

Strathman 1995 NPTS, TTI Urban 
Mobility Study data set

NA -0.32 Elasticity includes direct effects of lane miles on household VMT 
and indirect effects due to changes in density.

Marshall TTI Urban Mobility Study 
data set

NA -0.76 to
  -0.85

Elasticity may be overstated because of roadway classification 
issues and diversion from outside urban areas.
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The situation is further clouded because no empirical studies 
have been done on the induced demand effect of operational 
treatments. Unlike capacity expansions (the basis of previous 
elasticity work), which improve recurring congestion every day, 
operational treatments only affect those conditions when dis-
ruptions occur (e.g., incidents and work zones). Although the 
effect of operational treatments can be tracked to a reduction in 
overall mean travel times, which in theory should have an 
induced demand effect, it is still not known if an improvement 
in travel times on a few days affects travel behavior in the same 
way as travel time improvements that affect every day.

These issues are sufficiently complex to warrant additional 
study. This project did not attempt to address these issues, but 
focused on the immediate or first-order impacts of improve-
ment strategies on reliability. As new research becomes 
available that quantifies induced demand effects, it can be 
incorporated with the relationships developed in the present 
study. This process would involve three steps:

1. Estimate the first-order change in mean travel time and 
reliability measures.

2. Increase demand using elasticities from new research. The 
pivot point formulation is a convenient way to implement 
elasticities; for example,

V V T T= ( )0 0�
β

where
 V = new volume, including induced demand;
 V0 = original volume, before the improvement;
 T = travel time after the improvement;
 T0 = travel time before the improvement; and
	 b	=	elasticity.

3. Reestimate the mean travel time and reliability measures 
using the new (increased) demand values.
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C h a p t e r  9

Findings and products  
of the research

Data Set Compilation and Usage

A large and comprehensive data set was compiled with which 
to conduct the research. The data set will be of use for future 
research and the SHRP 2 data archive being constructed with 
the L03 data set as its core. The data set includes many levels 
of aggregation and summarization. The traffic data from 
urban freeways, which are the largest portion of the data set, 
include the original measurements from roadway detectors 
(5-minute intervals by lane) and number in the hundreds 
of millions of records. The traffic data also are summarized 
at several spatial and temporal aggregation levels. The most-
summarized portion of the data set is the one used for the cross-
sectional statistical analysis: every record is an annual summary 
of traffic and reliability characteristics, with annual event char-
acteristics and roadway features merged into it. The data pro-
cessing included new procedures that the research team created 
specifically for the project.

The sources of the data were primarily from state depart-
ments of transportation; data included continuous traffic mea-
surements, incidents, work zones, intelligent transportation 
system equipment, operating policies, and geometric charac-
teristics. In addition, the team purchased a limited amount 
of private-vendor vehicle probe data for rural freeways and 
signalized arterials; the rural freeway data were adequate to 
establish reliability, but the signalized arterial data did not 
appear to have enough samples, and local signal timing data 
were not available for the time period of the probe data. Inci-
dent data from a second private vendor also were available 
without a fee; these provided the needed lane blockage data 
in several locations where public agencies did not collect this 
type of information.

Fusion and integration of the various data proved to be a 
daunting and time-consuming task. The data sets had differ-
ent georeferencing, which complicated the matching of traffic 

data, incidents, improvements, and geometric characteris-
tics. Much of the matching had to be done manually. A large 
amount of testing, quality control, and development of new 
processing procedures had to be conducted.

The utility of the data set as a research resource was proven 
several times during the project. Often, the team needed to 
investigate new areas or compute factors, and these tasks were 
easily accomplished because the data were analysis ready. It is 
expected that future researchers will appreciate this feature.

In addition to supporting research, the data set represents 
an excellent model for practitioners to use in developing per-
formance monitoring systems for congestion and reliability. 
Specifically, the different levels of temporal and spatial aggre-
gation can be used to support many local requirements. The 
fusion of traffic, event, and geometric data provides the basis 
for tracking reliability trends, and it also includes the data 
required to explain those trends (e.g., demand and events). 
Data processing for performance monitoring is not trivial, 
and many different methods and assumptions can be used. 
The L03 research provides a basis for standardizing those 
procedures.

Exploratory Analyses

A large variety of exploratory analyses were undertaken 
before the main analyses to test assumptions and develop 
data processing methods and as an aid in understanding reli-
ability in general. The highlights of these exploratory analyses 
follow.

Recommended Reliability Metrics

Empirical testing revealed that the performance metrics defined 
in the early stages of the research were sensitive to the effects of 
improvements. However, the team noticed that the 95th per-
centile Travel Time Index (TTI) may be too extreme a value to 
be influenced significantly by operations strategies and that 

Conclusions and Recommendations
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the 80th percentile was more sensitive to these improvements. 
As a result, the 80th percentile TTI was added to the list of 
reliability performance metrics for the remainder of the 
research. The final set of reliability metrics, which also are 
appropriate for general practice, appears in Table 9.1.

Travel Time Distributions

Development of travel time distributions is the starting point 
for defining reliability metrics and a convenient way to visual-
ize general congestion and reliability patterns for a highway 
section or trip. Examination of the distributions from the study 
sections used in this research reveals several characteristics:

•	 The shape of the travel time distribution for congested peak 
times (nonholiday weekdays) is much broader than the 
sharp spike evident in uncongested conditions. The breadth 
of this broad shoulder of travel times decreases as conges-
tion level decreases;

•	 Similarly, the tails of the distributions (to the right) appear 
more exaggerated for the uncongested time slices. How-
ever, note that the highest travel times occur during the 
peaks; and

•	 Despite the fact that peaks have been defined, some trips 
occur at close to free flow. More trips are at free-flow speeds 
in the peak period than in the peak hour, probably because 
the peak times actually shift slightly from day to day, as traf-
fic demand can be shifted by events. Also, there are probably 
some days when overall demand is lower than other days.

Data Requirements for Establishing Reliability

Because reliability is defined by the variability of travel condi-
tions (travel time), it must be measured over a substantial 
portion of time to allow all of the influences of random events 
to be exerted. The optimal question here is, how much data are 
enough? Tests showed that an absolute minimum of 6 months 
of data is required to establish reliability within a small error 

rate in areas where winter weather is not a major factor. A full 
year of data is preferred.

Trends in Reliability

A study was undertaken using the Atlanta study sections to 
track performance for 2006, 2007, and 2008. Between 2006 and 
2007, average congestion increased and reliability decreased, 
using the Planning Time Index and the Buffer Index to measure 
reliability. However, between 2007 and 2008, average congestion 
levels fell on all study sections as demand fell in response to the 
reduction in overall economic activity; this decrease corre-
sponded to many anecdotal stories and other analyses about 
congestion in 2008. However, on most study sections, the Buffer 
Index showed an increase or a very marginal decrease, which 
would indicate that reliability worsened in most cases. In con-
trast, the Planning Time Index decreased on all sections. This 
discrepancy between the indices raised doubts about the use of 
the Buffer Index as the primary metric for tracking trends in 
reliability. The problem comes from way the Buffer Index is cal-
culated: it is the buffer time (difference between the 95th per-
centile and the mean) normalized by the mean. In this 
experiment the 95th percentile decreased less than the mean, 
resulting in a higher Buffer Index. In other words, the decreased 
demand affected all points on the travel time distribution, not 
just the upper tail. The team believes the mechanism for these 
changes was a reduction in demand that led to across-the-board 
decreases in congestion, including days with and without road-
way events (disruptions). However, conditions on the worst 
days, which are primarily a result of severe disruptions, were 
improved to a lower degree than typical or average conditions. 
The team expects that operations strategies would have a more 
pronounced effect on the times influenced by severe events.

The result of this experiment was that the Buffer Index is 
considered too erratic or unstable for use as the primary reli-
ability metric for tracking performance trends or for studying 
the effects of improvements. However, as a secondary metric, it 
provides useful information and should be included in a suite 

Table 9.1. Recommended Reliability Metrics

Reliability Performance Metric Definition Units

Buffer Index Difference between 95th percentile TTI and average travel time, normalized by average travel time.
Difference between 95th percentile TTI and median travel time (MTT), normalized by MTT.

%

Failure and on-time measures Percentage of trips with travel times <1.1 MTT and <1.25 MTT.
Percentage of trips with space mean speed less than 50, 45, and 30 mph.

%

Planning Time Index 95th percentile TTI. None

80th percentile TTI Self-explanatory. None

Skew statistic (90th percentile TTI - median)/(median - 10th percentile TTI). None

Misery Index (modified) Average of highest 5% of travel times divided by free-flow travel time. None
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of reliability performance metrics. In Atlanta from 2007 to 
2008, it might be said that from the perspective of the user, the 
new conditions of 2008 were indeed less reliable, if one assumes 
that the 2008 average congestion was the base level: the worst 
days (as measured by the 95th percentile) are still out there. If, 
however, one considers the base level of congestion to be 2007, 
then it is clear that overall, the user’s experience was improved.

Defining Peak Hour and Peak Period

Most previous studies of reliability and congestion define 
fixed time periods for the peak hour and peak period. How-
ever, for this research, the team decided that the most appro-
priate method would be to define each term specifically for 
each study section. Several methods were tested, with the 
most effective using a definition based on the most typical 
start and end times of continuous congestion. The resulting 
time slices were reviewed against local anecdotal knowledge 
and required very little adjustment.

Estimating Demand in Oversaturated Conditions  
on Freeways

Because the study took an empirical approach to studying 
reliability, the team had to deal with the thorny issue of how 
to measure demand given that measured volumes under 
congested flow are actually less than capacity on freeways. A 
method for assigning the demand stored in queues during 
periods of flow breakdown was developed and used through-
out the remainder of the research, particularly in defining 
the demand-to-capacity ratio for the statistical modeling.

Reliability Breakpoints on Freeways

It was shown that travel time reliability on a freeway is not a 
function of counted traffic volumes until a breakpoint volume 
is reached. At that breakpoint, travel time reliability decreases 
abruptly. Once the breakpoint volume is exceeded, the decrease 
in travel time reliability (increase in the variance) is extreme and 
so abrupt as to suggest it is a vertical function, with a nonsingu-
lar relationship to further volume increases. The breakpoint 
volume varies significantly between facilities and even within 
the same freeway facility (by location and direction of travel  
on the same facility), and it does not appear to be a fixed ratio 
of the theoretical capacity of the subject section of the facility. 
The breakpoint in reliability generally occurs at a counted 
volume significantly lower than the theoretical capacity of 
the facility computed according to the methodology of the 
Highway Capacity Manual (HCM). This is partly because the 
breakpoint volume computed in this analysis was the average 
hourly volume counted over a peak period, and not the peak 
15-minute demand used in the HCM capacity calculation.

But this peaking effect does not entirely explain the differ-
ence between breakpoint and theoretical capacity. Part of the 
reason that the breakpoint volume is significantly lower than 
the theoretical capacity is that most sections of freeway are 
upstream of a bottleneck and, thus, are affected by down-
stream congestion backing up into the subject section long 
before the subject section’s HCM capacity is reached. Further, 
traffic-influencing events, especially incidents, effectively lower 
capacity when they occur, and over time these events cause 
reliability to degrade. This effect manifests itself in lower break-
point volumes than for capacity related strictly to physical fea-
tures. Finally, even for bottlenecks, the data suggest that the 
reliability breakpoint occurs long before the theoretical HCM 
capacity of the bottleneck is reached.

Sustainable Service Rates on Freeways

Just as travel times vary over time, capacity is not a fixed value, 
but also varies over time. The same factors that influence reli-
ability also affect capacity variability. Incidents and work zones 
reduce overall roadway capacity by blocking lanes and shoul-
ders and by affecting driver behavior (e.g., lower speeds and 
variable following distances due to rubbernecking). Weather 
conditions affect driver behavior in similar ways. Capacity 
probably is not affected by the amount of demand (volume) 
as reliability is, but it is affected by the nature of that demand. 
That is, at a microlevel, when volumes are very close to theo-
retical capacity, variability in driver behavior, small bursts of 
demand at merge areas (e.g., on-ramps), and the distribu-
tion of trucks at specific places and times all probably cause 
flow to break down at different demand levels. The research 
did not specifically tease out these factors, but all of them are 
embedded in the final capacity distributions. The team devel-
oped a large set of capacity distributions that look roughly like 
travel time distributions, but reversed: the tail of the distribu-
tion is skewed to the left (lower capacity values) rather than 
to the right. Because these distributions were developed from 
year-long data measurements, they include the effect of many 
influencing factors, resulting in capacity values that could be 
used in a stochastic framework to model congestion and reli-
ability. The set of capacity distributions also is a useful con-
struct for accounting for reliability within future versions of 
the HCM.

Travel Time Distributions on Urban Freeways, 
Signalized Arterials, and Rural Freeways

An analysis of travel time distributions for different time slices 
and congestion levels revealed the following characteristics:

•	 All distributions feature a tail that is skewed to the right 
(i.e., higher travel times). Most of these abnormally high 
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travel times can be attributed to one or more of the sources 
of congestion; that is, they occur in the presence of an 
event(s) and/or high demand;

•	 Uncongested periods are characterized by a sharp peak of 
travel time frequencies near the free-flow speed;

•	 When congestion dominates the time slice (e.g., peak hour, 
peak period), the travel time distribution becomes more 
broad and less peaked;

•	 Travel time distributions on signalized arterials are uni-
formly broad in shape, even for relatively low levels of con-
gestion, presumably because of signal delay at even low 
volumes and interference from side traffic; and

•	 As trips become longer, travel time distributions assume 
the typical uncongested shape.

Vulnerability to Flow Breakdown

Examination of the 5-minute data at individual stations 
(groups of detectors in a direction on a highway segment) 
reveals that there is an upsurge in the 95th percentile travel 
times 20 to 45 minutes before the start of what is considered 
the normal peak period. This upsurge begins before the 
uptick in average travel times and indicates that this window 
of time is vulnerable to flow breakdown. These windows are 
extremely important for operators to focus on as breakdowns 
during this time will strongly influence the duration and 
severity of the peak.

Reliability of Urban Trips  
Based on the Reliability of Links

For extended travel (trips of 10 to 12 miles) on urban freeways, 
the reliability of the entire trip can be predicted as a function 
of the reliability of the links that comprise the trip. Although 
not specifically tested, it should be possible to construct trip 
reliability for trips that include other types of highways in addi-
tion to freeways, subject to the issue of time dependency for 
long trips.

Before-and-After Studies on Selected  
Study Sections

The primary goal of the research was to develop relationships 
for predicting the change in reliability due to improvements. 
The best way to accomplish this was with controlled before-
and-after studies. However, such analyses are substantially 
more challenging than what is typically done because of the 
data requirements: to establish reliability empirically, 6 to 
12 months of data are required, with 12 months being the 
preferred data collection period. This means a long period of 
continuously collected data is required both before and after 
the improvement. So, instead of designing traditional before-

and-after experiments, the team concentrated on collecting 
continuous traffic data from areas known from previous 
experience to have quality data, interesting congestion, and 
good records of event data. At a minimum, this method of data 
collection would provide the best data for developing cross-
sectional statistical relationships. As it turned out, the team was 
able to identify 17 cases of improvements that coincided with 
identified data, although the types of improvements were 
somewhat limited.

The analysis produced reliability adjustment factors that 
can be applied to the various improvements. The adjustment 
factors for a specific type of improvement vary slightly, pre-
sumably because background (baseline) conditions are some-
what different. Users are directed to the detailed descriptions 
of the studies in Appendix B to select the conditions most 
appropriate for their situation.

A global finding from the before-and-after analyses was 
that all forms of improvements, including capacity expan-
sion, affect both average congestion and reliability in a posi-
tive way (i.e., average congestion is reduced and reliability is 
improved). Conceptually, this makes sense: one of the seven 
sources of congestion and reliability identified earlier was the 
amount of base capacity. All things being equal, more capac-
ity (in relation to demand) means that the roadway is able to 
absorb the effects of some events that would otherwise cause 
disruption. The size of this effect was greater than the team 
had originally anticipated (see Chapter 8 for a complete dis-
cussion). For transportation professionals, this significance 
of capacity means that to the extent that reliability is valued 
more highly than average travel time, a large part of the ben-
efits of capacity-expansion projects has been missed in his-
torical analyses.

Cross-Sectional Statistical Modeling

Going into the project, the team realized that only a limited 
number of before-and-after studies would be possible. 
Therefore, much of the effort for the study went into the 
creation of a cross-sectional data set from which statistical 
models could be developed. The final analysis data set for 
the statistical modeling is highly aggregated: each record 
represents reliability, traffic, and event data summarized 
for a section for a year. This structure is necessary because 
reliability is measured as the variability in travel times over 
the course of a year. As such, the cross-sectional model is a 
macroscale model. It does not seek to predict the travel 
time for a particular set of circumstances; that is, it is not 
appropriate for real-time travel time prediction. Rather, it 
seeks to predict the overall travel time characteristics of a 
highway section in terms of both mean and reliability per-
formance. It is, therefore, appropriate for adaptation to 
many existing models and applications that seek to do the 
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same, and it can serve as the basis for conducting cost–benefit 
analyses.

Two model forms were developed: simple and complex. The 
simple model form relates all of the reliability metrics to the 
mean TTI for all three highway types studied (urban free-
ways, rural freeways, and signalized arterials). These relation-
ships are convenient for many applications that produce mean 
travel time–based measures as output (e.g., traditional travel 
demand forecasting models, HCM). Because the mean TTI 
developed from the research data includes the effects of all pos-
sible influences of congestion, which produces a mean value 
greater than model results (which usually are for typical non-
extreme conditions), an adjustment factor was developed 
to convert model output to the overall mean TTI so that the 
relationships can be applied.

A more detailed model form was developed that relates 
reliability measures to the factors that influence reliability. 
It has long been theorized that reliability is determined  
by demand, capacity, incidents, weather, and work zones.  
In fact, that is what the team found from analyzing the 
research data set. A tiered predictive model was developed 
that related the reliability metrics over highway sections 
(multiple links, usually 4 to 5 miles long) for different time 
slices to

•	 The critical demand-to-capacity ratio (maximum from the 
individual links);

•	 Lane hours lost due to incidents and work zones combined 
(annual); and

•	 Number of hours during which rainfall was ≥0.05 inch 
(annual).

The rainfall variable must be computed using weather records. 
Guidance was developed for how to develop the demand-
to-capacity ratio. Lane hours lost was decomposed into a 
series of subrelationships that can be estimated using easily 
obtained data.

Congestion by Source

The research team had conducted congestion by source analy-
ses in earlier projects, but the data available for those studies 
were incomplete. The L03 research offered an opportunity 
to assemble the data more carefully and to incorporate other 
data sources. The goal was to capture the contributions of 
the factors influencing congestion and reliability, as shown 
in Figure 9.1. The analysis was conducted at a microlevel: 
data at the 5-minute level were analyzed for possible effects 
by the sources.

An assignment of congestion causality was made for the 
measured delay in the Seattle data. Taken at face value, the 
analysis supports the commonly heard statement that “inci-
dents and crashes cause between 40% and 60% of all delay.” 
In reality, a considerable portion of the delay associated with 

Figure 9.1. A model of congestion and its sources.
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incidents and crashes is caused by large traffic volumes. There-
fore, the amount of delay caused by incidents is actually less 
than can be reasonably assigned by simply observing the 
occurrence of events. There were numerous examples in the 
analysis data set of significant crashes and other incidents that 
caused little or no congestion because of when they occurred. 
These showed that without sufficient volume, an incident 
causes no measurable change in delay.

In the Seattle area, many incidents take place during peak 
periods, causing already existing congestion to grow worse, 
the result of the interwoven effects of incidents, bad weather, 
and traffic volumes on travel times. In addition, all types of 
disruptions to normal roadway performance (rain, crashes, 
noncrash incidents) cause congestion to start earlier and last 
longer during the peak period, while increasing travel times 
during the normally congested times. Incidents and other 
disruptions also can cause congestion to form during times 
of the day that are normally free from congestion. However, 
congestion only forms when the disruption lowers functional 
capacity below traffic demand. Thus volume, relative to road-
way capacity, is a key component of congestion formation, 
and in urban areas it is likely to be the primary source of 
congestion. Disruptions then significantly increase the delay 
that the basic volume condition creates.

The fact that traffic volume is the basis of congestion also 
affects how various traffic disruptions alter travel patterns. Not 
only does traffic volume affect whether an incident causes con-
gestion, but it affects how long that congestion lasts once the 
primary incident has been removed. The Seattle data showed 
that in the morning peaks, disruptions have a more noticeable 
effect on the timing of the end of the peak period, while in the 
evening the opposite is true.

In summary, analysis of 42 roadway segments in the Seattle 
metropolitan area showed that a majority of travel delay in 
the region is the direct result of traffic volume demand exceed-
ing available roadway capacity. Whenever they occur, inci-
dents, crashes, and bad weather add significantly to the delays 
that can be otherwise expected. The largest of these disruptions 
plays a significant role in the worst travel times that travelers 
experience on these roadways. However, the relative impor-
tance of any one type of disruption tends to vary considerably 
from corridor to corridor.

In peak periods, incidents add only marginally to total 
delay, but they shift when and where those delays occur, as 
well as who suffers from those delays. That is, many inci-
dents shift where a normally occurring bottleneck occurs, 
freeing up some roadway sections, while causing others to 
suffer major increases in congestion. But taken as a total, if a 
section is already normally congested, the added delay from 
incidents is modest (at least in Seattle) compared with the 
daily delay from simply too many vehicles for the available 
physical capacity.

In congested urban areas, traffic incidents often cause 
unreliable traffic patterns more than increases in total delay. 
Although the total delay value does goes up, the big change is 
often the shift in who gets delayed. For a specific severe inci-
dent, many travelers may value the extra (unplanned) delay 
very highly, and they are very likely to remember these extreme 
cases. Some of that (total) delay is offset by other travelers 
who reach their destination early because their trip is down-
stream of the incident-caused bottleneck, and volume has 
probably been metered by that bottleneck.

Significance of Demand  
for Reliability Estimation

A major result of the research was the finding that demand 
(volume) is an extremely important determinant of reliabil-
ity, especially in terms of its relation to capacity. As shown in 
Figure 9.1, demand’s interaction with physical capacity is the 
starting point for determining congestion. The research team 
initially postulated that the effect of most events is determined 
by the level of demand under which those events occur. For 
example, if an incident or work zone blocks a traffic lane, the 
impact will only be felt if volumes are high enough to be 
affected by the lost capacity. However, the team did not expect 
demand to have as strong an effect as the analyses indicated. 
Throughout the different analyses conducted for the L03 
research, demand kept emerging as a significant factor. The 
case for the strong effect of demand (volume) is summarized 
as follows:

•	 The Atlanta trend analysis revealed that roughly a 3% drop 
in demand significantly improved both average congestion 
level and reliability between 2007 and 2008.

•	 The before-and-after studies of capacity improvements 
produced a strong improvement in reliability, not just 
average congestion. The team believes the mechanism for 
this improvement is a simultaneous change in capacity in 
relation to demand (the demand-to-capacity or volume-
to-capacity ratios), so a change in either will produce the 
same effect. This simultaneous effect was subsequently 
verified in the cross-sectional statistical models.

•	 The Seattle congestion by source analysis revealed that a 
substantial portion of delay could not be attributed to an 
event, even with careful consideration of off-section condi-
tions and special events. This leaves demand as the sole cause. 
The Seattle analysis also shows that incidents during low-
demand periods have only a small effect on congestion.

•	 The midday cross-sectional models did not show lane hours 
lost due to incidents and work zones as a statistically sig-
nificant independent variable, indicating that under low-
volume conditions (i.e., conditions in which volumes are 
low relative to the available physical capacity), the annual 
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effect of disruptions is small. Extreme disruptions (e.g., 
multiple lane closures) clearly will have an effect on an 
individual day, but over the course of a year these events 
are rare and do not appear to move the annualized reli-
ability metrics very much at all.

•	 The peak hour and peak period cross-sectional models 
showed that the demand-to-capacity ratio was a stronger 
contributor to the model than lane hours lost.

The influence of demand is probably related not only to sheer 
volume of traffic but its characteristics. As volumes approach 
theoretical capacity, traffic flow becomes unstable and increas-
ingly susceptible to breakdown due to small changes. These 
small changes can occur at a point substantially less than 
theoretical capacity, and when they occur near potential bottle-
neck areas such as on-ramps, weaving areas, and lane drops, 
the team postulates that their effect is enhanced.

In addition to variations in demand as a source of unreli-
able travel times, evidence exists that physical capacity is also 
variable. This variation in physical capacity, which results 
from disruptions and other factors that can occur on a high-
way segment, was observed by the research team throughout 
the course of a year. However, the work of Brilon and prelimi-
nary research conducted by other SHRP 2 contractors suggest 
that capacity varies even in the absence of disruptions (1).

Why would physical capacity vary? The team believes that 
fluctuations in traffic conditions at a microscale are the most 
likely causal factors. These small changes could be related to

•	 Driver behavior—One or a few vehicles can behave aber-
rantly (e.g., sudden unexplained stops);

•	 Truck presence—A small increase in trucks in the traffic 
stream at a given point in time and space could have a det-
rimental effect; and

•	 Microbursts of merging traffic—A small but intense influx 
of vehicles from an on-ramp could be enough to cause flow 
breakdown.

The finding that demand and capacity strongly influence 
travel time reliability has several implications:

•	 The mechanism for the influence of demand and capacity 
on travel time reliability can be seen in the before-and-after 
studies. Consider the distribution of travel times that occurs 
on a routinely congested highway segment over the course 
of a year. Capacity additions and demand reductions will 
reduce nearly all the travel times in the congested portion 
of the distribution and will improve congestion on nearly 
all days; capacity and demand are always present in the 
roadway environment. In contrast, strategies geared to dis-
ruptions (e.g., incident management) will only affect con-
gestion when those disruptions occur, and disruptions will 

not appear during every congested period of every day. In 
other words, only selected travel times in the congested por-
tion of the distribution will be reduced by strategies such 
as incident management;

•	 It is clear that traditional capacity projects improve reli-
ability, and failure to account for this effect in economic 
analyses has excluded benefits to users; and

•	 Demand management strategies, such as pricing, also will 
lead to improvements in reliability.

Accounting for volumes in relation to available capacity can 
provide a tool for efficiently allocating operations strategies, 
particularly incident management. That is, times and loca-
tions that are most vulnerable to flow breakdowns can be 
targeted.

Reliability As a Feature of Congestion

The intertwined relationship between demand, capacity, and 
disruptions documented in the L03 research leads to another 
major conclusion: reliability is a feature or attribute of conges-
tion, not a distinct phenomenon. Because any influence on 
congestion will lead to unreliable travel, reliability cannot be 
considered in isolation. Going into the research, the project 
team’s thinking, like that of the profession in general, was that 
reliability related primarily to disruptions and the operational 
treatments aimed at those disruptions. The analysis showed 
that even in the absence of disruptions, a substantial amount 
of variability (i.e., unreliability) in travel times exists for 
recurring-only (bottleneck-related) conditions. Therefore, 
the most inclusive view of travel time reliability is that it is 
part of overall congestion. Just as congestion can be defined 
by extent and severity, it can also be defined by how it varies 
over time. Operational treatments are clearly effective in 
dealing with unreliable travel, but so are other congestion-
relief measures.

recommendations  
for Future research

Based on the results of this study, the team offers the following 
suggestions for future research.

Detailed Examination of Reliability Causes 
and Prediction on Signalized Arterials

Because of data limitations in the number of signalized arte-
rials with continuous travel time data, the amount of data on 
those that did, lack of continuous volume data to match against 
the available travel time data, and no information on incident 
and work zone characteristics, only simple analyses using travel 
time data from signalized arterials could be undertaken for 
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this study. However, since the completion of data collection 
for this research, it is clear that data availability is about to 
increase dramatically. Private vendors of vehicle probe data 
have improved their data processing methods and increased 
their sources of travel time data in the past 18 months. As a 
result, many states already have purchased statewide private- 
vendor probe data, primarily for traveler information appli-
cations. Like freeway detector data, these data have value in 
developing performance measures and supplying research 
studies after the fact. This trend is expected to continue as 
new sources, perhaps even those from consumer sources, 
continue to be added to their products. In addition, new 
and relatively inexpensive technologies for collecting travel 
times on signalized highways, such as Bluetooth readers and 
vehicle signature detectors, offer great potential for new 
forms of traffic management applications by public 
agencies.

Effective Collection of Systemwide  
Demand Data

The study was possible because traditional urban freeway 
detectors collect both speeds and volumes. However, if the 
newer sources of speed and travel time data discussed above 
become widespread, there will be no companion volume mea-
surements until the number of vehicles detected approaches 
100%. The L03 research has shown that demand is a vital deter-
minant of reliability. Further, from an operations viewpoint, 
emerging methods such as active traffic management are likely 
to require more, not less, data (travel times and volumes) to feed 
their control processes.

Consistency in Data Collection  
for Incidents and Work Zones

The research team labored mightily to find and process inci-
dent and work zone data to match against the traffic measure-
ments. The duration of blockages (recognizing that the nature 
of blockages can change over the course of a single event) 
was the critical piece of data required. Also, consistency in geo-
coding of events, traffic detectors, and roadway features would 
greatly enhance future research. An extra complication is the 
fact that private vendors (at least the two used in this research) 
use the Traffic Message Channel standard for geolocation, a 
standard that is almost never used by public agencies. To avoid 
the large amount of manual intervention endured by the team 
(which would be even more onerous for public agencies trying 
to deal with the issues systemwide rather than on selected 
study sections), consideration should be given to how all of 
these data should be collected, organized, and related to each 
other. The development of new standards or the extension of 
existing ones may be required to accomplish this goal.

Development of Alternative Reliability 
Concepts for Extreme Events

As developed in this research, the concept of reliability is part 
of the urban congestion problem. That is, it has been studied 
on highways that experience routine congestion from both 
recurring and nonrecurring sources. The working definition 
used was that reliability is a description of how travel times 
vary over time. It was noted that extreme events (disruptions) 
such as major snow or ice storms, hurricane evacuations, and 
full highway closures do not have a statistical significance in 
trying to predict reliability, which, by definition, occurs over 
the course of a year. Because they are so rare, they only shift the 
annual travel time distribution by a small amount. However, 
these extreme events are extremely important to both trans-
portation agencies and travelers, even if their occurrence is 
rare. If the urban congestion–based reliability concepts cannot 
describe these events, then an alternative should be explored.

Standard Data Processing Methods for 
Developing Congestion and Reliability 
Performance Measures

In order to conduct the research, data processing procedures 
had to be developed to develop reliability performance met-
rics. These metrics are likely to be used on their own in many 
other transportation applications. However, a large amount 
of leeway exists in how the metrics can be developed from 
field data. As congestion performance monitoring becomes 
more widespread, and perhaps even federally mandated, the 
need to produce consistent metrics will become critical.

Improved Methods for Microlevel  
Weather Data Collection

The locations of the weather observations used in the study 
relative to the study sections were admittedly crude. The 
assumption was that data from the closest National Weather 
Service station observations would apply to the study sec-
tions, when they could be several miles apart. This assump-
tion probably led to misallocation of rainfall occurrence for 
at least some cases, but major weather fronts are most likely 
accounted for in the data. However, the team believes that 
better methods can be explored. In lieu of deploying weather 
stations at regular intervals, which would be prohibitively 
expensive, one promising method is the automated processing 
of time-lapse radar information to obtain precipitation data.

Reliability of Trips

At the beginning of the study the team selected the extended 
highway section as the basic unit of analysis. Relatively 
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homogenous highway sections in terms of geometrics, typi-
cally covering 4 to 5 miles for urban sections (with much 
longer lengths for the few rural freeway sections), were chosen. 
These study sections were chosen because this is the level at 
which the data were available and because they can be used by 
many existing applications. However, for several reasons, cal-
culating the reliability of an entire trip is likely to be quite 
different. First, with few exceptions, the study sections were 
selected because they had relatively high volumes and were 
moderately congested during peak times; that is, they represent 
the worst conditions that can be encountered for a user making 
an entire trip. This means that a trip-based travel time dis-
tribution is likely to gravitate toward one that shows less 
congestion and better overall reliability. An additional com-
plication is the scheduling component: if a trip can start within 
a window of time as opposed to a specific time, users can in 
theory improve the travel time and reliability of their trip. 
Research is needed on these subjects, specifically how they 
affect investment decisions. That is, the facility focus as 
suggested by the L03 perspective leads to a certain set of 
investments (improvements). If the focus is changed to the 
entire trip (i.e., trips, as well as facilities, are managed), how 
do the investment decisions change?

Before-and-After Studies for Demand 
Management, Active Traffic Management, 
and Institutional Aspects of Incident 
Management

Reliability evaluations style (with long before-and-after peri-
ods) should be undertaken as these types of projects are 
deployed. In addition to observing changes in congestion and 
reliability, these future studies should report the changes in 
the independent variables for the L03 cross-sectional statistical 
models (demand, capacity, and the characteristics of inci-
dents and work zones). The present study noted that various 
degrees of institutional arrangements and policies related to 
incident management should have a positive effect on inci-
dent duration, which can then be related to reliability via the 
statistical models. The idea is that, beyond the deployment of 
equipment, the success of incident management will be 

determined by how agency agreements and policies translate 
to reductions in incident duration in the field.

Real-Time Predictive Models

A potentially useful corollary to the macrolevel reliability 
relationships developed in the L03 effort is the development 
of models that would relate the congestion level on a specific 
day to the contributing factors. Such models would provide 
travel time prediction for a given set of circumstances rather 
than reliability prediction, but they would provide a useful 
tool for traffic managers. The L03 data set could be used as a 
starting point for this research, although based on the team’s 
experiences with the congestion by source analysis, more 
microlevel data on traffic flow and events might be necessary 
(e.g., 30-second to 1-minute volumes and speeds). A micro-
level examination of traffic flow breakdown would provide 
great insight into the causes of congestion.

Expand on the Concept of Whole-Year Capacity

The L03 research demonstrated that capacity varies substan-
tially. The concept of whole-year capacity, touched on in the 
L03 exploratory analyses, is worth pursuing further. Because 
many predictive models (including travel demand forecast-
ing and macroscopic and mesoscopic simulation models) use 
the concept of capacity as a starting point for determining 
congestion, whole-year capacity may be an entry point for 
incorporating reliability into these models. That is, instead 
of using a fixed capacity, model runs could use whole-year 
capacity distributions stochastically. Because the whole-year 
capacity distributions developed from empirical data include 
all of the possible influencing factors, they represent a more 
realistic picture of how capacity actually behaves.

reference
1. Brilon, W., J. Geistefeldt, and H. Zurlinden. Implementing the 

Concept of Reliability for Highway Capacity Analysis. In Transporta-
tion Research Record: Journal of the Transportation Research Board, 
No. 2027, Transportation Research Board of the National Academies, 
Washington, D.C., 2007, pp. 1–8. http://trb.metapress.com/content/
u700713ur834410r/fulltext.pdf.
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A p p e n d i x  A

Data Elements and Structure for  
the Statistical Analysis Data Set

Table A.1. Area Operations

Category Variable Definition or Question

Location URBAN_AREA Name of urban area where site is located

TIME_SPAN Dates the data cover (typically 1 year)

Service patrol (SP) AREA_SP_TRUCKS Number of SP trucks in active duty

AREA_SP_TRUCKS_ACTIVE Percentage of total hours in a week when SP trucks are active

AREA_SP_TRUCKS_MILE Trucks per route mile

Incident management TIM_SA_OVERALL Traffic Incident Management Self-Assessment Score, Overall
 policies

TIM_SA_PROGRAM_INSTITUTIONAL Traffic Incident Management Self-Assessment Score, Section 1

TIM_SA_OPERATIONAL_ISSUES Traffic Incident Management Self-Assessment Score, Section 2

TIM_SA_COMM_TECHNOLOGY Traffic Incident Management Self-Assessment Score, Section 3

QUICK_CLEARANCE_LAW Is a quick-clearance law in effect?

PDO_MOVE_TO_SHOULDER_LAW Can property damage only (PDO) crashes be moved to shoulder by motorists?

FATALITY_REMOVAL Can fatalities be moved without medical examiner death certification?

Operations TMC_STAFF_MILE Number of traffic management center (TMC) staff divided by miles covered

Table A.2. Service Patrols

Category Variable Definition

Location SHRP_SECTION Unique ID for this SHRP 2 study section

TIME_SPAN Dates the data cover (typically 1 year)

PERIOD Time slice (1 = peak hour; 2 = peak period; 3 = midday; 4 = weekday; 5 = weekend/ 
holiday; 6 = counterpeak; 7 = peak shoulder; 8 = all days)

Service patrol SERVICE_PATROL_TRUCKS Number of SP trucks covering the section during the time period

SERVICE_PATROL_SCHEDULE_PCT Percentage of time period when SP trucks are active

SERVICE_PATROL_HOURS_MILE Truck hours per mile during time period
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Table A.3. Bottleneck Off-Section

Category Variable Definition

Location SHRP_SECTION Unique ID for this SHRP 2 study section

BOTTLENECK_NAME Unique name for this bottleneck

ROUTE_NORTH_APPROACH Intersecting Route 1

ROUTE_SOUTH_APPROACH Intersecting Route 2

ROUTE_EAST_APPROACH Intersecting Route 3

ROUTE_WEST_APPROACH Intersecting Route 4

NB_EXIT_AADT_C Annual average daily traffic–to–capacity (AADT/C) ratio on the northbound exit to the bottleneck

NB_EXIT_PEAK_PERIOD_D_C Peak period demand-to-capacity (d/c) ratio on the northbound exit to the bottleneck

NB_EXIT_PEAK_HOUR_D_C Peak hour d/c ratio on the northbound exit to the bottleneck

SB_EXIT_AADT_C AADT/C ratio on the southbound exit to the bottleneck

SB_EXIT_PEAK_PERIOD_D_C Peak period d/c ratio on the southbound exit to the bottleneck

SB_EXIT_PEAK_HOUR_D_C Peak hour d/c ratio on the southbound exit to the bottleneck

EB_EXIT_AADT_C AADT/C ratio on the eastbound exit to the bottleneck

EB_EXIT_PEAK_PERIOD_D_C Peak period d/c ratio on the eastbound exit to the bottleneck

EB_EXIT_PEAK_HOUR_D_C Peak hour d/c ratio on the eastbound exit to the bottleneck

WB_EXIT_AADT_C AADT/C ratio on the westbound exit to the bottleneck

WB_EXIT_PEAK_PERIOD_D_C Peak period d/c ratio on the westbound exit to the bottleneck

WB_EXIT_PEAK_HOUR_D_C Peak hour d/c ratio on the westbound exit to the bottleneck

Table A.4. Section Characteristics

Category Variable Definition

Location URBAN_AREA Name of urban area where the site is located

SHRP_SECTION Unique ID for this SHRP 2 study section

TIME_SPAN Dates the data cover (typically 1 year)

ROUTE From TMC configuration file

DIR_TXT From TMC configuration file

BEG_MILE_POINT Beginning log mile

END_MILE_POINT Ending log mile

Geometrics LNTH_QTY Length (mi)

LANE_WIDTH Lane width (ft)

AVG_NO_LANES Number of lanes (weighted average if number changes on section)

TOTAL_ON_RAMPS Total number of on-ramps

TOTAL_OFF_RAMPS Total number of off-ramps

NO_LINKS Number of links comprising this section

Traffic flow AADT_C_AVERAGE Vehicle miles traveled (VMT)–weighted average of link AADT/C ratios

AADT_C_CRITICAL Maximum of link AADT/C ratios

VMT_24_HOUR_TOTAL 24-hour VMT for entire time span

Intelligent transportation system equipment NO_RAMP_METERS Number of ramp meters

NO_CCTV Number of CCTV cameras

NO_DMS Number of dynamic message signs
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Table A.5. Section Events

Category Variable Definition

Location SHRP_SECTION Unique ID for this SHRP 2 study section

TIME_SPAN Dates the data cover (typically 1 year)

PERIOD Time slice (1 = peak hour; 2 = peak period; 3 = midday; 4 = weekday; 5 = weekend/ 
holiday; 6 = counterpeak; 7 = peak shoulder; 8 = all days)

Weather PCT_HRS_RAIN_01 Percentage of hours when there was rain ≥0.01 inch

PCT_HRS_RAIN_05 Percentage of hours when there was rain ≥0.05 inch

PCT_HRS_RAIN_10 Percentage of hours when there was rain ≥0.1 inch

PCT_HRS_RAIN_25 Percentage of hours when there was rain ≥0.25 inch

PCT_HRS_RAIN_50 Percentage of hours when there was rain ≥0.50 inch

PCT_HRS_RAIN_DRY_SPELL Percentage of hours when there was rain ≥0.01 inch after +30 days of no rain

PCT_HRS_SNOW Percentage of hours when measurable snow fell

PCT_HRS_UNFROZEN_PRECIP Percentage of hours when some form of precipitation was present

PCT_HOURS_FROZEN_PRECIP Percentage of hours when snow, sleet, or freezing rain fell

PCT_HOURS_FOG Percentage of hours when fog was reported

Incidents INCIDENT_SOURCE Data source for incidents

INCIDENT_LANE_HOURS_LOST Lane hours lost due to incidents

INCIDENT_SHOULDER_HOURS_LOST Shoulder hours lost due to incidents

INCIDENT_DURATION_AVERAGE Average incident duration

INCIDENT_DURATION P95 95th percentile of incident duration

NO_INCIDENTS Total number of incidents (all types)

NO_CRASHES Total number of crashes

NO_FATAL_CRASHES Number of fatal crashes

NO_INJURY_CRASHES Number of injury crashes

NO_PDO_CRASHES Number of PDO crashes

NO_COMB_TRUCK_CRASHES Number of combination truck crashes

Work zones WZ_SOURCE Data source for work zones

WZ_LANE_HOURS_LOST Lane hours lost due to work zones

WZ_SHOULDER_HOURS_LOST Shoulder hours lost due to work zones

NO_WORK_ZONES Number of newly initiated work zones

WZ_DURATION_AVERAGE Average work zone duration

WZ_DURATION P95 95th percentile of work zone duration
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Table A.6. Section Traffic Flow

Category Variable Definition

Location SHRP_SECTION Unique ID for this SHRP 2 study section

TIME_SPAN Dates the data cover (typically 1 year)

PERIOD Time slice (1 = peak hour; 2 = peak period; 3 = midday; 4 = weekday; 5 = weekend/holiday;  
6 = counter peak; 7 = peak shoulder; 8 = all days)

Traffic flow D_C_AVERAGE VMT-weighted average of link d/c ratios

D_C_CRITICAL MAX (link d/c ratios)

D_C_CRITICAL_DISTANCE (Distance of critical d/c link from downstream end) divided by section length

VMT_TOTAL Sum of link VMT for this time span

DVMT_AVERAGE Average daily VMT

DVMT_STD_DEV Standard deviation of daily VMTs

DVMT_HIGH_VARIABILITY_DAYS Number of days when VMT > (1.1 ∗ average daily VMT)

Table A.7. Link Characteristicsa

Category Variable Definition

Location SHRP_SECTION Unique ID for this SHRP 2 study section

TIME_SPAN Dates the data cover (typically 1 year)

LINK_ID Link to which the station belongs

ROUTE From TMC configuration file

DIR_TXT From TMC configuration file

BEG_MILE_POINT Beginning log mile

END_MILE_POINT Ending log mile

Geometrics LNTH_QTY Length of detector zone (zone of influence) for computing travel times

NO_LANES Number of lanes

LANE_WIDTH Lane width (ft)

RIGHT_SHOULDER_WIDTH Right-shoulder width (ft)

LEFT_SHOULDER_WIDTH Left-shoulder width (ft)

NO_ON_RAMPS Number of on-ramps

NO_OFF_RAMPS Number of off-ramps

WEAVING_TYPE Type of weaving section

SPEED_LIMIT Speed limit (mph)

HCM_CAPACITY HCM capacity

(continued on next page)



176

Table A.8. Link Traffic Flowa

Category Variable Definition

Location SHRP_SECTION Unique ID for this SHRP 2 study section

TIME_SPAN Dates the data cover (typically 1 year)

LINK_ID Link to which the station belongs

PERIOD Time slice (1 = peak hour; 2 = peak period; 3 = midday; 4 = weekday; 5 = weekend/
holiday; 6 = counter peak; 7 = peak shoulder; 8 = all days)

Traffic Statistics VOLUME_MEASURED_AVERAGE Straight average of measured volumes for this period

VOLUME_DEMAND_AVERAGE Average of demand volumes (calculated)

VOLUME_MEASURED_STD_DEV Standard deviation of measured volumes

VOLUME_DEMAND_STD_DEV Standard deviation of demand volumes

VOLUME_HIGH_VARIABILITY_DAYS Number of days when volume > (1.1 ∗ average demand volume)

PCT_AADT Average demand volume divided by AADT

D_C Demand-to-capacity ratio

a  Data on basic traffic flow by time period for each link.

Traffic summaryb AADT AADT, computed from the data

AADT_OTHER AADT (secondary value)

AADT_OTHER_SOURCE Other sources of AADT (e.g., Highway Performance Monitoring System)

AADT_STD_DEV Standard deviation of directional average daily traffic (DADT) that goes into AADT calculation

AWDT Average weekday daily traffic (AWDT)

AWDT_STD_DEV Standard deviation of DADTs that go into AWDT calculation

AWEHDT Average weekend/holiday daily traffic

AWEHDT_STD_DEV Standard deviation of DADTs that go into average weekend/holiday daily traffic calculation

K_FACTOR Peak hour K-factor, computed from the data

PCT_TRUCKS Percentage trucks

AADT_C AADT/C ratio

PHV_PPV Peak hour demand volume divided by peak period demand volume

PCT_IMPUTED Percentage of original records for which volume has been imputed

a  Data about the links (segments) and traffic summaries.
b  If two detectors exist on a link, then one must be selected as the representative detector.

Table A.7. Link Characteristicsa (continued)

Category Variable Definition
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A p p e n d i x  B

effect of Ramp Metering  
on Reliability on i-285  
in Atlanta, Georgia

Background

The Georgia Department of Transportation (GDOT) has 
aggressively pursued ramp metering as a control strategy on 
Atlanta area freeways. GDOT started very limited deployment 
in 1996; by 2005 there were nine operating meters. In 2006, the 
FastForward program was initiated by the Governor. As part 
of this program, 161 ramp meters were installed, most of them 
in 2008.

All 10 of the SHRP 2 study sections in Atlanta now have 
ramp meters installed. Two sections, the northbound and 
southbound sections of I-75/I-85 (the downtown connec-
tor), already had ramp meters beginning in 2005. The four 
sections on I-285 had meters operating as of July 7, 2008, and 
the four sections on I-75 had meters operating as of Octo-
ber 2, 2008. It was decided to use the four I-285 sections for the 
analysis as there were sufficient before-and-after data when 
the analysis was initiated (i.e., approximately 6 months of data 
for each period). As shown in Chapter 4, 6 months of data 
provide acceptable estimates of annual reliability if winter 
weather is not a major factor.

The locations of the ramp meters for the analysis sections 
on I-285 (north side) are listed below. Their operating times 
expand slightly beyond the beginning and ending of the peak 
periods, as determined in Chapter 4.

•	 Eastbound between I-75/Cobb and Peachtree–Dunwoody 
Road—6:15 to 9:30 a.m. (Section 5)
44 New Northside Drive,
44 Riverside Drive,
44 Roswell Road, and
44 Peachtree–Dunwoody Road;

•	 Westbound between Buford Highway and GA 400—6:15 
to 9:45 a.m. (Section 6)
44 Buford Highway,
44 Peachtree Industrial Boulevard,
44 Chamblee–Dunwoody Road, and
44 Ashford–Dunwoody Road;

•	 Westbound between GA 400 and I-75—3:30 to 6:30 p.m. 
(Section 7)
44 Glenridge Drive,
44 Roswell Road,
44 Riverside Drive, and
44 Northside Drive;

•	 Eastbound between Roswell Road and Spaghetti Junction— 
3:30 to 6:30 p.m. (Section 8)
44 Ashford–Dunwoody Road,
44 North Peachtree Road,
44 Peachtree Industrial Boulevard, and
44 Buford Highway.

Methodology

A before-and-after analysis was conducted. The before period 
was defined as January 1 through June 16, 2008. The after 
period was defined as July 16 through December 31, 2008. 
This allowed for a dead zone of 2 weeks before and after ramp 
meter turn-on to allow the system to stabilize. Two types of 
controls were used:

1. Control sections—Sections that did not have ramp meters 
installed. Because of the aggressiveness of Georgia DOT’s 
program, it was difficult to locate sections with no ramp 
meters for the analysis period that had similarly high-base 
congestion levels, although four sections were located. In 
addition to these sections, a reduced before-and-after 
period of 75 days before June 16 and 75 days after July 16 
was selected for all SHRP 2 sections. As shown in the 

Before-and-After Analyses  
of Reliability Improvements
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Phase 2 report, a period of 75 days of data is insufficient to 
establish reliability, but is more than adequate to estimate 
average congestion, as measured by the Travel Time Index 
(TTI) here.

2. Influencing factors—Demand (vehicle miles traveled 
[VMT]) and lane hours lost due to incidents were com-
piled for the before-and-after periods to see to what 
degree they might be influencing results. The team was 
particularly concerned about demand changes; as shown 

in the Phase 2 report, gas price and availability in the 
summer of 2008 caused a temporarily sharp drop-off in 
demand.

Results

Figures B.1 through B.4 show the TTI for each daily peak 
period for the four sections receiving ramp metering. The 
self-imposed dead zone is readily apparent in the June 16 to 

Figure B.1. Section 5 peak period TTIs.

Figure B.2. Section 6 peak period TTIs.
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July 16 period. Note that Section 5 had a data outage after 
October 15, which means that any results will be inconclusive 
for this section (although they have been reported). Tables B.1 
through B.4 present the results of the before-and-after analy-
sis on the four study sections. Multiple reliability metrics 
were used to characterize the before-and-after conditions. 
Also included is the sustainable service rate (SSR) developed 
in Chapter 4. Two estimates of daily vehicle miles traveled 

(DVMT) were used: the DVMT in the peak period and in an 
extended period, including 45-minute shoulders on each side 
of the peak period. These estimates were used to account for 
queuing in the peak period, which lowers observed VMT. 
These results reveal

•	 Base (average) congestion conditions as measured by 
TTI dropped between 7.5% and 13.4% for the period.

Figure B.3. Section 7 peak period TTIs.

Figure B.4. Section 8 peak period TTIs.
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Table B.1. Section 5: I-285 Eastbound from I-75 to GA 400  
(Peak Period, 7:15 to 8:45 a.m.; Section Length, 6.860 mi)

Before After Change (%)

Reliability Metric

TTI 1.447 1.338 -7.5

Buffer Index 0.332 0.320 -3.6

Planning Time Index 1.927 1.744 -9.5

Skew statistic . . -2.1

Misery Index 2.117 1.944 -8.2

On-time at 45 mph 34.0% 48.7% 43.2

Mean SSR 1,750 1,740 -0.6

Control Statistic

Peak period DVMT 1,019,705 1,010,691 -0.9

Shoulder + peak DVMT 1,694,413 1,642,311 -3.1

Peak incident lane hours lost 7.63 6.22 -18.5

Peak incident shoulder hours lost 32.25 24.83 -23.0

Peak number of incidents 61 45 -26.2

Table B.2. Section 6: I-285 Westbound from I-75 to GA 400  
(Peak Period, 4:30 to 6:30 p.m.; Section Length, 6.880 mi)

Before After Change (%)

Reliability Metric

TTI 1.814 1.571 -13.4

Buffer Index 0.708 0.766 8.2

Planning Time Index 3.099 2.774 -10.5

Skew statistic 1.231 2.559 107.9

Misery Index 3.528 3.227 -8.5

On-time at 45 mph 25.4% 44.9% 76.8

Mean SSR 1,720 1,755 2.0

Control Statistic

Peak period DVMT 886,378 896,326 1.1

Shoulder + peak DVMT 2,100,381 2,105,177 0.2

Peak incident lane hours lost 26.77 15.24 -43.1

Peak incident shoulder hours lost 93.91 61.94 -34.0

Peak number of incidents 80 95 18.8
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Table B.3. Section 7: I-285 Eastbound from GA 400 to I-85  
(Peak Period, 4:00 to 6:30 p.m.; Section Length, 5.861 mi)

Before After Change (%)

Reliability Metric

TTI 1.958 1.735 -11.4

Buffer Index 0.766 0.843 10.1

Planning Time Index 3.458 3.197 -7.5

Skew statistic 1.855 2.603 40.3

Misery Index 3.963 3.631 -8.4

On-time at 45 mph 24.4% 34.9% 43.0

Mean SSR 1,690 1,740 3.0

Control Statistic

Peak period DVMT 870,265 876,770 0.7

Shoulder + peak DVMT 2,440,655 2,461,321 0.8

Peak incident lane hours lost 31.65 30.88 -2.4

Peak incident shoulder hours lost 67.50 70.35 4.2

Peak number of incidents 117 139 18.8

Table B.4. Section 8: I-285 Westbound from GA 400 to I-85  
(Peak Period, 7:15 to 9:00 a.m.; Section Length, 5.595 mi)

Before After Change (%)

Reliability Metric

TTI 1.602 1.453 -9.3

Buffer Index 0.287 0.313 9.1

Planning Time Index 2.061 1.909 -7.4

Skew statistic 0.557 0.707 26.9

Misery Index 2.470 2.267 -8.2

On-time at 45 mph 18.7% 34.7% 85.6

Mean SSR 1,920 1,910 -0.5

Control Statistic

Peak period DVMT 924,065 923,262 -0.1

Shoulder + peak DVMT 1,758,676 1,713,866 -2.5

Peak incident lane hours lost 15.58 12.93 -17.0

Peak incident shoulder hours lost 31.70 45.63 43.9

Peak number of incidents 71 80 12.7
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•	 As demonstrated in Chapter 4, the Buffer Index and the 
skew statistic generally increased as TTI dropped; the Buf-
fer Index increased approximately 10%, and the skew sta-
tistic increased on three of the sections as TTI dropped. 
Section 5 showed a 3.6% decrease in the Buffer Index, but 
this section also showed the lowest drop in TTI (7.5%). 
The skew statistic changed dramatically on some sections 
(up to 107% on Section 6). Further analyses may show that 
this fluctuation is an aberration, but it is potentially an 
unstable indicator of changes in reliability.

•	 The Planning Time Index decreased on all sections; 
decreases ranged from 7.4% to 9.5%. The Misery Index 
showed the most consistent pattern for the reliability met-
rics, decreasing between 8.2% and 8.5% on all sections.

•	 SSR was relatively stable on Sections 5 and 8 (morning 
peaks), exhibiting slight decreases of 0.5% and 0.6%, 
respectively. On the two afternoon peak sections, increases 
of 2.0% and 3.0% were observed. Note that the afternoon 
peak sections also had higher base congestion levels than 
the morning peak sections.

•	 Shoulder DVMT was either stable or increased slightly on 
the two afternoon peak sections. Shoulder DVMT on the 
morning peak sections decreased by 2.5% and 3.1%.

•	 As might be expected with only 6 months of data confined 
to weekday periods of approximately 1.5 to 2 hours, inci-
dent characteristics varied across the sections, sometimes 
increasing in severity, sometimes decreasing.

•	 Incident effects were relatively stable on Sections 5, 7, and 
8. Section 6 showed a significant drop-off in the time lanes 
and shoulders were blocked.

Table B.5 shows the performance of the control sections for 
the entire before-and-after periods. These are sections that 
did not have ramp meters installed during 2008 and are not 
SHRP 2 study sections. The results show that congestion and 
reliability were relatively stable on the control sections in the 
before-and-after period, although their base congestion lev-
els were generally lower than the SHRP 2 study sections.

Table B.6 shows the change in TTI for the reduced (75-day) 
before-and-after period. For the nontreatment sections, a 
general downward trend is apparent in average congestion 
levels. However, the decrease on three of the four sections 
with ramp metering was larger than the decrease on the 
untreated sections.

Conclusions

Both average congestion and reliability (as measured by the 
Planning Time Index) showed improvements for the time 
period after ramp meters became operational, with decreases 

Table B.5. Performance of Control Sections

Period Section TTI Buffer Index Skew Statistic Planning Time Index On-Time at 45 mph (%) Misery Index

Before 23 1.081 0.364 31.948 1.474 0.916 1.689

After 23 1.101 0.417 27.518 1.560 0.893 2.098

Before 26 1.349 0.568 3.995 2.115 0.616 2.803

After 26 1.350 0.532 3.167 2.068 0.598 2.632

Before 28 1.041 0.153 11.477 1.200 0.966 1.476

After 28 1.076 0.177 4.790 1.267 0.956 1.660

Before 29 1.243 0.528 7.928 1.899 0.684 2.120

After 29 1.204 0.384 4.080 1.666 0.783 2.134

Table B.6. Change in Base 
Congestion for All Sections  
(±75 days from Ramp Meter Turn-On)

TTI

Section Before After Change (%)

1 1.714 1.561 -8.9

2 1.345 1.251 -7.0

3 1.313 1.288 -1.9

4 2.253 2.247 -0.3

5 1.418 1.278 -9.8

6 1.757 1.510 -14.0

7 1.862 1.693 -9.1

8 1.530 1.520 -0.6

9 1.554 1.468 -5.5

10 1.633 1.522 -6.8

23 1.031 1.026 -0.4

26 1.138 1.276 12.1

28 1.034 1.065 3.0

Note: Sections 5 to 8 are the treatment sections.
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Table B.8. Performance Measure Comparisons for I-210 Westbound in Los Angeles

Time Period

Average Travel 
Time Buffer Index Failure Rate

Planning Time 
Index Skew Statistic Misery Index

Before After Before After Before After Before After Before After Before After

Peak hour 25.7
 0.1

26.5
 0.1

0.246
0.006

0.245
0.004

0.051
0.004

0.046
0.003

2.358
0.016

2.410
0.010

 1.062
 0.048

 0.932
 0.038

0.391
0.009

0.389
0.010

Peak period 23.9
 0.1

25.0
 0.1

0.312
0.005

0.303
0.003

0.098
0.003

0.095
0.003

2.327
0.009

2.391
0.010

 1.151
 0.030

 1.050
 0.028

0.491
0.007

0.499
0.009

Counterpeak 15.9
 0.0

16.8
 0.0

0.152
0.003

0.210
0.004

0.039
0.002

0.052
0.002

1.399
0.013

1.530
0.009

 4.374
 0.223

 2.895
 0.099

0.466
0.014

0.491
0.015

Midday 14.8
 0.0

15.1
 0.0

0.040
0.001

0.064
0.002

0.002
0.000

0.016
0.001

1.114
0.003

1.186
0.004

 2.989
 0.084

 4.350
 0.121

0.147
0.005

0.286
0.011

Weekday 16.8
 0.0

17.2
 0.0

0.398
0.004

0.423
0.003

0.148
0.001

0.154
0.001

1.928
0.005

2.024
0.005

24.515
 0.280

16.458
 0.201

0.850
0.003

0.884
0.003

All year 16.1
 0.0

16.5
 0.0

0.294
0.004

0.331
0.004

0.124
0.001

0.130
0.001

1.810
0.006

1.899
0.007

34.160
 0.442

19.620
 0.216

0.844
0.004

0.886
0.004

Note: Standard errors are shown in boldface.

Table B.7. Summary Demand, Weather, and Incident 
Characteristics on I-210 Westbound in Los Angeles

Before After

Demand Annual average daily traffic 
(AADT)

140 144

K-factor 5% 5%

Weather (number Rain 8 0
 of days)

Fog 0 0

Snow 0 0

Wind 0 0

Incidents No collision 100 113

Collision, no injury 60 98

Collision, injury and/or 
fatality

9 14

of roughly 10% and 8%, respectively. The changes in demand 
probably explain a small amount of the decreases. Incident 
effects do not appear to be large enough to have a significant 
influence on the improvements in congestion and reliability. 
Therefore, the 10% and 8% decreases should be taken as an 
upper limit. Without a statistical model, it is difficult to know 
how much to adjust the decreases, but a reasonable estimate 
would be that ramp meters reduce average congestion by 8% 
to 9%, and improve reliability by 6% to 7%. Changes in year-
long capacity, as measured by the SSR, are in the 2% to 3% 
range.

effect of Adaptive Ramp  
Meter Control on i-210 in  
Los Angeles, California

The results show little change to slight degradation in conges-
tion and reliability due to implementing the adaptive ramp 
meter control (Tables B.7 and B.8 and Figures B.5 and B.6).  
However, these results were obtained before adjustment  
of the metering algorithm. Therefore, these tests will  
be redone with a different after period. (Note: Travel time 
density is the frequency percentage for the travel time 
measurements.)

effect of implementing Rapid 
Clearance policy for Large-
Truck Crashes on i-710 in  
Los Angeles, California

Tables B.9 through B.12 and Figures B.7 through B.10 show 
the results of the analysis.

effect of Ramp Meters in 
San Francisco Bay Area, 
California
Tables B.13 and B.14 and Figures B.11 and B.12 present the 
results of the analysis.

effect of Freeway Service 
patrol implementation in 
San diego, California
I-8 Westbound

Tables B.15 and B.16 and Figures B.13 and B.14 present the 
results of the analysis.
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Figure B.6. Travel time density on I-210 westbound in Los Angeles, 
peak period.

Figure B.5. Travel time density on I-210 westbound in Los Angeles, 
peak hour.
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Table B.10. Performance Measure Comparisons for I-710 Northbound in Los Angeles

Average Travel 
Time Buffer Index Failure Rate

Planning Time 
Index Skew Statistic Misery Index

Time Period Before After Before After Before After Before After Before After Before After

Peak hour 19.9
 0.1

17.0
 0.1

0.337
0.011

0.238
0.007

0.098
0.005

0.065
0.003

2.330
0.040

1.874
0.031

2.401
0.108

1.940
0.081

0.754
0.028

0.682
0.027

Peak period 18.7
 0.1

16.1
 0.0

0.347
0.009

0.247
0.007

0.109
0.003

0.075
0.002

2.259
0.026

1.784
0.017

1.890
0.055

2.277
0.078

0.803
0.017

0.714
0.020

Counterpeak 19.1
 0.1

18.9
 0.1

0.358
0.005

0.319
0.005

0.126
0.003

0.100
0.003

2.185
0.017

2.082
0.011

1.721
0.060

1.476
0.043

0.625
0.012

0.538
0.007

Midday 15.3
 0.0

14.7
 0.0

0.169
0.009

0.124
0.005

0.063
0.003

0.040
0.002

1.657
0.019

1.444
0.013

4.006
0.198

2.305
0.082

0.645
0.018

0.497
0.014

Weekday 16.3
 0.0

15.4
 0.0

0.343
0.003

0.282
0.002

0.129
0.001

0.100
0.001

1.955
0.006

1.745
0.005

4.278
0.043

4.194
0.039

0.784
0.005

0.673
0.004

All year 15.5
 0.0

14.8
 0.0

0.325
0.002

0.257
0.002

0.129
0.001

0.097
0.001

1.855
0.007

1.659
0.004

6.328
0.078

8.684
0.131

0.797
0.006

0.671
0.004

Note: Standard errors are shown in boldface.

Table B.9. Summary Demand, Weather, and Incident 
Characteristics on I-710 Northbound in Los Angeles

Before After

Demand AADT 161 159

K-factor 6% 6%

Weather (number of days) Rain 11 6

Fog 0 2

Snow 0 0

Wind 0 0

Incidents No collision 196 162

Collision, no injury 139 121

Collision, injury and/or fatality 17 13

Table B.11. Summary Demand, Weather, and Incident 
Characteristics on I-710 Southbound in Los Angeles

Before After

Demand AADT 167 148

K-factor 5% 5%

Weather (number of days) Rain 11 8

Fog 3 5

Snow 0 0

Wind 0 0

Incidents No collision 189 156

Collision, no injury 165 165

Collision, injury and/or fatality 12 14
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Figure B.7. Travel time density on I-710 northbound in Los Angeles, 
peak hour.

Table B.12. Performance Measure Comparisons for I-710 Southbound in Los Angeles

Average Travel 
Time Buffer Index Failure Rate

Planning Time 
Index Skew Statistic Misery Index

Time Period Before After Before After Before After Before After Before After Before After

Peak hour 18.0
 0.1

17.0
 0.0

0.167
0.006

0.177
0.004

0.037
0.004

0.019
0.002

1.792
0.016

1.641
0.008

 0.529
 0.028

 1.053
 0.042

0.366
0.009

0.311
0.008

Peak period 17.4
 0.0

16.5
 0.0

0.194
0.005

0.199
0.003

0.043
0.002

0.028
0.002

1.750
0.013

1.622
0.005

 0.690
 0.029

 1.041
 0.022

0.399
0.008

0.342
0.006

Counterpeak 16.4
 0.1

15.1
 0.0

0.262
0.007

0.218
0.007

0.076
0.003

0.061
0.003

1.802
0.021

1.596
0.011

 2.573
 0.099

 3.657
 0.138

0.610
0.016

0.604
0.018

Midday 14.8
 0.0

14.1
 0.0

0.190
0.007

0.103
0.003

0.049
0.002

0.031
0.001

1.527
0.015

1.349
0.011

 3.314
 0.116

 3.513
 0.103

0.566
0.022

0.402
0.010

Weekday 15.2
 0.0

14.5
 0.0

0.272
0.002

0.225
0.001

0.084
0.001

0.066
0.001

1.644
0.005

1.503
0.003

 4.457
 0.052

 5.739
 0.059

0.570
0.005

0.475
0.004

All year 14.7
 0.0

14.1
 0.0

0.280
0.001

0.212
0.002

0.096
0.001

0.070
0.001

1.590
0.004

1.461
0.002

10.589
 0.231

10.381
 0.101

0.575
0.004

0.473
0.003

Note: Standard errors are shown in boldface.
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Figure B.8. Travel time density on I-710 northbound in Los Angeles, 
peak period.

Figure B.9. Travel time density on I-710 southbound in Los Angeles, 
peak hour.
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Table B.13. Summary Demand, Weather, and 
Incident Characteristics for I-580 Eastbound  
in San Francisco Bay Area

Before After

Demand AADT 110 111

K-factor 5% 5%

Weather (number Rain 16 18
 of days)

Fog 6 11

Snow 0 0

Wind 0 0

Incidents No collision 182 131

Collision, no injury 28 25

Collision, injury and/
or fatality

7 8

Figure B.10. Travel time density on I-710 southbound in Los Angeles, 
peak period.

I-8 Eastbound and SR 52 Westbound

Tables B.17 through B.20 and Figures B.15 through B.18 pre-
sent the results of the analysis.

effect of Capacity 
improvements on Reliability in 
Minneapolis–St. paul, Minnesota

Analytic Procedures for Determining the 
Impacts of Reliability Mitigation Strategies

Preliminary Investigation of the Before-and-After 
Study Sections

Five sites in the Minneapolis–St. Paul area were selected for the 
before-and-after study. A brief description of project type and 

duration is stated in Table B.21. The before study period for each  
site is approximately the year before the project start date, and 
the after study period is approximately the year after the project 
completion date. Due to lack of data for the first half of the after 
period of Project C, the after period was extended to ensure a 
full year’s data for the analysis. Table B.22 lists the before-and-
after periods for all before-and-after study sections.

Additional information about Projects E, G, and H includes 
the following:

•	 Project E’s improvement work (adding an auxiliary lane) 
happened right after the operation of the HOT lane project 
on the same section of I-394. To isolate the effect of the 
HOT project from the effect of the new auxiliary lane, an 
additional section on I-394 was chosen to study HOT 
effects. In this additional section (I-394 eastbound from 
I-494 to Highway 169), the only improvement for the study 
period was the HOT project.

•	 All study sections, except Project G, were chosen at approx-
imately the locations where improvement projects were 
located. Due to a lack of data at or near the Project G loca-
tion, a southbound section, which is about 3 miles upstream 
of the project site and separated by a major bottle neck 
(I-494), was chosen for the analysis.

•	 For Project H, the northbound direction of the highway 
was selected as the study section. However, different 
improvement work was done on each side of the highway. 
The northbound section had a third lane added, and the 
southbound section had an auxiliary lane added. The 
interchange conversion from cloverleaf to a folded dia-
mond affected both directions. Therefore, the treatment 
(as in a quasi-experimental design) for Project H was a 
combination of different improvement projects.
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Table B.14. Performance Measure Comparisons for I-580 Eastbound in San Francisco Bay Area

Average Travel 
Time Buffer Index Failure Rate

Planning Time 
Index Skew Statistic Misery Index

Time Period Before After Before After Before After Before After Before After Before After

Peak hour 14.2
 0.2

11.1
 0.1

0.347
0.014

0.349
0.007

0.126
0.014

0.101
0.004

3.685
0.064

2.986
0.036

1.149
0.120

1.974
0.076

0.666
0.047

0.705
0.018

Peak period 13.1
 0.1

10.2
 0.0

0.426
0.010

0.337
0.005

0.166
0.005

0.101
0.002

3.738
0.063

2.800
0.016

1.273
0.068

1.621
0.038

0.822
0.024

0.738
0.010

Counterpeak  7.1
 0.0

 6.5
 0.0

0.156
0.004

0.170
0.005

0.014
0.004

0.053
0.002

1.526
0.011

1.585
0.025

1.614
0.119

3.324
0.108

0.363
0.032

0.693
0.028

Midday  7.6
 0.1

 6.9
 0.0

0.140
0.010

0.223
0.006

0.056
0.006

0.080
0.002

1.886
0.081

1.762
0.024

2.514
0.174

4.470
0.129

0.941
0.095

0.802
0.024

Weekday  8.6
 0.0

 7.5
 0.0

0.686
0.008

0.461
0.003

0.207
0.003

0.178
0.001

3.050
0.027

2.263
0.007

5.693
0.100

5.527
0.048

1.329
0.014

0.990
0.007

All year  7.8
 0.0

 7.1
 0.0

0.612
0.012

0.446
0.002

0.174
0.002

0.171
0.001

2.833
0.019

2.136
0.006

7.041
0.132

8.676
0.073

1.412
0.014

0.997
0.005

Note: Standard errors are shown in boldface.

Figure B.11. Travel time density on I-580 eastbound in San Francisco Bay 
Area, peak hour.
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Table B.15. Summary Demand, Weather, and 
Incident Characteristics for I-8 Westbound  
in San Diego

Before After

Demand AADT 49 46

K-factor 4% 5%

Weather (number  
of days)

Rain 9 5

Fog 0 0

Snow 0 0

Wind 0 0

Incidents No collision 6 4

Collision, no injury 6 5

Collision, injury and/ 
or fatality

2 0

Figure B.12. Travel time density on I-580 eastbound in San Francisco Bay Area, 
peak period.

Peak hour travel time for both the before and after study peri-
ods of each section was plotted to examine the improvement 
effect on average travel time and reliability. The analyzed peak 
hour was specific to the study section; it was identified by an 
algorithm designed by the research team. The peak hour 
travel time frequency distribution for the before and after 
periods also was plotted to identify the shift in distribution. 

By examining the plots, the team observed the following gen-
eral trends:

•	 Projects B, C, E, and E2 demonstrated reductions in average 
travel time and improvements in reliability of travel time;

•	 Project G showed increases in average travel time, but it 
also showed improvements in reliability of travel time; and

•	 Project H showed reductions in average travel time along 
with deteriorations in reliability of travel time.

Due to the relative locations of the study section and the 
improvement project site of Project G, this section was possibly 
subject to other influencing factors besides the improvement 
project itself. For example, if more traffic took southbound 
Highway 169 due to improved interchange and driving con-
ditions, the study section may have experienced an increase 
in travel time because of the I-494 bottleneck. However, even 
with increases in average travel time, this section showed an 
improvement in travel time reliability.

Project H is another section that requires further inves-
tigation. Multiple improvement projects implemented at the 
same time could have different effects than the same projects 
implemented separately.

At this time, the effects of confounding factors (e.g., inci-
dents and weather effects) have not been studied along with 
improvement project effects.
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Table B.16. Performance Measure Comparisons for I-8 Westbound in San Diego

Time Period

Average Travel 
Time Buffer Index Failure Rate

Planning Time 
Index Skew Statistic Misery Index

Before After Before After Before After Before After Before After Before After

Peak hour 6.1
0.0

6.1
0.0

-0.001
0.000

0.002
0.002

0.000
0.000

0.004
0.001

1.000
0.000

1.015
0.001

NA
NA

NA
NA

0.000
0.000

0.090
0.015

Peak period 6.1
0.0

6.1
0.0

-0.001
0.000

0.006
0.000

0.000
0.000

0.002
0.000

1.000
0.000

1.018
0.000

NA
NA

NA
NA

0.000
0.000

0.055
0.005

Counterpeak 6.6
0.0

6.6
0.0

0.106
0.010

0.103
0.010

0.061
0.002

0.056
0.002

1.505
0.025

1.440
0.018

NA
NA

NA
NA

0.892
0.034

0.811
0.029

Midday 6.1
0.0

6.1
0.0

-0.005
0.001

0.015
0.000

0.003
0.001

0.002
0.000

1.005
0.001

1.029
0.000

NA
NA

NA
NA

0.081
0.010

0.058
0.005

Weekday 6.2
0.0

6.2
0.0

-0.013
0.000

0.003
0.000

0.021
0.001

0.018
0.001

1.034
0.001

1.037
0.001

NA
NA

NA
NA

0.298
0.007

0.267
0.006

All year 6.2
0.0

6.2
0.0

-0.013
0.000

0.004
0.000

0.017
0.000

0.015
0.000

1.026
0.000

1.030
0.000

NA
NA

NA
NA

0.254
0.005

0.228
0.005

Note: Standard errors are shown in boldface. NA = Not available (skew statistics could not be computed because 10th and 50th percentile travel times were too close).

Figure B.13. Travel time density on I-8 westbound in San Diego, peak hour.
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Figure B.14. Travel time density on I-8 westbound in San Diego, peak period.

Table B.17. Summary Demand, Weather, and 
Incident Characteristics for I-8 Eastbound  
in San Diego

Before After

Demand AADT 49 49

K-factor 6% 6%

Weather (number Rain 13 8
 of days)

Fog 1 5

Snow 0 0

Wind 0 0

Incidents No collision 6 7

Collision, no injury 6 3

Collision, injury and/
or fatality

1 1

Peak hour travel times and peak hour travel time frequency 
distributions for the study segments are shown in Figures B.19 
through B.32. Performance measure comparisons for the study 
segments are provided in Tables B.23 through B.29.

effect of Large-Truck incident 
Rapid Clearance policy in 
Atlanta, Georgia

Various public and private organizations in metro Atlanta 
work together as the Traffic Incident Management Enhance-
ment (TIME) Task Force to improve the management of 

traffic incidents. In 2006, the TIME Task Force developed a 
strategic vision of initiatives to improve TIME services in 
metro Atlanta. One of several high-priority recommenda-
tions was to quickly and safely remove large-vehicle crashes 
from the roadways. The Georgia Towing and Recovery Incen-
tive Program (TRIP) program was developed as part of this 
strategic vision.

TRIP is a recovery incentive program that pays heavy-duty 
recovery companies a monetary bonus for clearing commer-
cial vehicle crashes quickly. TRIP helps to reduce the impact 
of major traffic incidents in metro Atlanta and to meet 
TIME’s aggressive clearance goal of 90 minutes or less. The 
program, implemented in early 2008, covers the following 
roadways:

•	 I-285 (beltway) and all freeways inside its perimeter
44 I-75,
44 I-85,
44 I-20,
44 GA 400, and
44 GA 166; and

•	 Four hot spots outside of the I-285 perimeter
44 I-85 Northside from I-285 to Pleasantdale Exit,
44 I-75 Northside from I-285 to Windy Hill Exit,
44 I-20 Westside from I-285 to Fulton Industrial Exit, and
44 I-20 Eastside from I-285 to Wesley Chapel Exit.

The analysis of the TRIP program proceeded differently from 
the other before-and-after evaluations. Instead of tracking 
reliability measures directly, the team considered incident 
characteristics instead. This decision was due to two factors. 
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Table B.18. Performance Measure Comparisons for I-8 Eastbound in San Diego

Average Travel 
Time Buffer Index Failure Rate

Planning Time 
Index Skew Statistic Misery Index

Time Period Before After Before After Before After Before After Before After Before After

Peak hour 7.3
0.0

7.1
0.0

 0.283
 0.008

 0.266
 0.007

0.085
0.004

0.077
0.004

1.737
0.016

1.647
0.017

 3.136
 0.233

 7.800
 0.901

0.575
0.022

0.604
0.023

Peak period 6.9
0.0

6.7
0.0

 0.301
 0.004

 0.287
 0.003

0.098
0.002

0.090
0.002

1.671
0.007

1.600
0.008

13.763
 0.641

47.245
 3.115

0.611
0.013

0.634
0.012

Counterpeak 6.0
0.0

6.0
0.0

-0.004
 0.001

-0.006
 0.001

0.007
0.001

0.033
0.002

1.018
0.001

1.035
0.005

NA
NA

NA
NA

0.187
0.024

0.279
0.015

Midday 6.0
0.0

5.9
0.0

 0.003
 0.001

-0.001
 0.001

0.010
0.001

0.009
0.001

1.034
0.002

1.022
0.001

NA
NA

NA
NA

0.200
0.017

0.159
0.012

Weekday 6.3
0.0

6.2
0.0

 0.169
 0.005

 0.120
 0.006

0.091
0.001

0.080
0.001

1.462
0.004

1.405
0.003

NA
NA

NA
NA

0.579
0.005

0.535
0.004

All year 6.2
0.0

6.1
0.0

 0.050
 0.003

 0.014
 0.001

0.071
0.001

0.065
0.001

1.371
0.005

1.336
0.003

NA
NA

NA
NA

0.530
0.004

0.494
0.004

Note: Standard errors are shown in boldface. NA = Not available (skew statistics could not be computed because 10th and 50th percentile travel times were 
too close).

Table B.19. Summary Demand, Weather, and 
Incident Characteristics for SR 52 Westbound 
in San Diego

Before After

Demand AADT 65 60

K-factor 8% 8%

Weather (number Rain 9 5
 of days)

Fog 0 0

Snow 0 0

Wind 0 0

Incidents No collision 11 8

Collision, no injury 2 3

Collision, injury and/
or fatality

2 1

First, most TRIP coverage was on highways not previously 
identified as SHRP 2 study sections, and sufficient traffic data 
were not available. Second, the after period was 2008, which 
was already observed to have lower congestion levels due to 
decreased demand.

A comparison of incident statistics for the before (2007) 
and after (2008) periods is shown in Table B.30. Because of 
the TRIP incentive program, average incident duration for 
large-truck crashes fell almost 13%, and lane hours lost per 
crash dropped over 9%. During the same period, crashes not 
involving large trucks showed a slight decrease in average 
incident duration (3%), but large decreases in lane hours lost 

(14%). Further examination of the data reveals that in 2008 
shoulder hours lost per nontruck crash increased 6% over 
2007. This increase coincides with a more aggressive incident 
management policy instituted in 2008 to move lane-blocking 
vehicles to the shoulder as rapidly as possible.

effect of Capacity 
improvements near  
Seattle, Washington

I-405 Southbound in Kirkland, Washington

Background

The I-405 Kirkland Nickel Improvement Stage 1 project 
expanded the capacity of a bottleneck segment on a major 
urban north–south Interstate by adding an additional gen-
eral-purpose (GP) lane. The project is the first stage of a 
multistage project to improve traffic conditions along a 
7.6-mile segment of I-405 north of Bellevue, Washington, 
a major suburban city.

The project location was a 2-mile southbound freeway seg-
ment of I-405, located on the east side of Lake Washington 
(Seattle lies on the west side of Lake Washington). The seg-
ment is part of a freeway commute route that experiences 
heavy volumes and congestion during the a.m. peak period. 
Traffic on that route travels toward the Bellevue central busi-
ness district. Just before reaching downtown Bellevue, the 
route also connects to an interchange with SR 520, a major 
east–west freeway that provides access to downtown Seattle 
(westbound) and the City of Redmond (eastbound); the latter 
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Table B.20. Performance Measure Comparisons for SR 52 Westbound in San Diego

Average Travel 
Time Buffer Index Failure Rate

Planning Time 
Index Skew Statistic Misery Index

Time Period Before After Before After Before After Before After Before After Before After

Peak hour 13.2
0.1

9.7
0.0

 0.369
 0.012

0.206
0.006

0.135
0.005

0.045
0.004

2.329
0.053

2.162
0.021

2.275
0.142

0.834
0.041

1.018
0.038

0.441
0.017

Peak period 13.0
0.1

9.3
0.0

 0.427
 0.008

0.257
0.004

0.163
0.003

0.068
0.003

2.414
0.037

2.177
0.013

7.613
0.711

0.662
0.017

1.223
0.033

0.524
0.014

Counterpeak 9.3
0.0

5.8
0.0

 0.000
 0.000

0.000
0.000

0.000
0.000

0.000
0.000

1.000
0.000

1.000
0.000

NA
NA

NA
NA

0.000
0.000

0.000
0.000

Midday 9.3
0.0

5.8
0.0

-0.002
 0.000

0.001
0.000

0.000
0.000

0.000
0.000

1.009
0.001

1.008
0.000

NA
NA

NA
NA

0.045
0.009

0.042
0.006

Weekday 10.3
0.0

6.8
0.0

 0.290
 0.007

0.476
0.002

0.146
0.001

0.271
0.001

1.760
0.005

1.881
0.004

NA
NA

NA
NA

1.111
0.010

0.805
0.006

All year 10.1
0.0

6.6
0.0

 0.072
 0.007

0.454
0.002

0.130
0.001

0.254
0.002

1.668
0.005

1.834
0.003

NA
NA

NA
NA

1.042
0.009

0.813
0.004

Note: Standard errors are shown in boldface. NA = Not available (skew statistics could not be computed because 10th and 50th percentile travel times 
were too close).

Figure B.15. Travel time density on I-8 eastbound in San Diego, peak hour.
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Figure B.16. Travel time density on I-8 eastbound in San Diego, peak period.

Figure B.17. Travel time density on SR 52 westbound in San Diego, 
peak hour.
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Figure B.18. Travel time density on SR 52 westbound in San Diego, 
peak period.

Table B.21. Before-and-After Study Sites in Minneapolis–St. Paul Area

Project 
ID Highway Location Project Description

Project 
Cost

Approximate 
Start Date

Approximate 
Completion 

Date

B I-94 Highway 100 to I-494 Add third lane in each direction. $55M September 2001 Fall 2004

C I-494 Highway 100 to  
Highway 5

Add third lane in each direction. $71M May 2003 Fall 2005

E I-394 Highway 100 to  
Highway 169

Add auxiliary lane westbound; high-occupancy 
toll (HOT) lane project (MnPass).

$2M September 2005 October 2005

E2 I-394 I-494 to Highway 169 HOT lane project (MnPass). NA May 2005 August 2006

G Highway 
169

Anderson Lakes and 
Pioneer Trail

Convert signalized intersections to diamond 
interchanges.

$20M Summer 2005 Fall 2006

H Highway 
100

Highway 7 to  
Minnetonka 
Boulevard

Add third lane northbound. Add auxiliary lane 
southbound. Convert Highway 7 interchange 
from cloverleaf to folded diamond.

$7M June 2006 October 2006

Table B.22. Study Periods for Before-and-After Projects

Project 
ID Route

Directions 
Covered

Beginning 
Landmark

Ending 
Landmark Before Period After Period

B I-94 Eastbound Highway 100 I-494 September 2000 to 
September 2001

November 2004 to November 2005

B I-94 Westbound I-494 Highway 100 September 2000 to 
September 2001

November 2004 to November 2005

C I-494 Eastbound Highway 5/312 Highway 100 April 2002 to April 2003 July 2006 to July 2007

E I-394 Westbound Highway 100 Highway 169 July 2004 to July 2005 November 2005 to November 2006

E2 I-394 Eastbound I-494 Highway 169 July 2004 to July 2005 November 2005 to November 2006

G Highway 169 Southbound T.H. 62 I-494 June 2005 to June 2006 November 2006 to November 2007

H Highway 100 Northbound 36th St I-394 April 2005 to April 2006 November 2006 to November 2007
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Figure B.19. Peak hour travel time for Project B eastbound.

Figure B.20. Peak hour travel time for Project B westbound.
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Figure B.21. Peak hour travel time for Project C.

Figure B.22. Peak hour travel time for Project E.
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Figure B.23. Peak hour travel time for Project E2.

Figure B.24. Peak hour travel time for Project G.
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Figure B.25. Peak hour travel time for Project H.

Figure B.26. Peak hour travel time frequency distribution for Project B 
eastbound.
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Figure B.27. Peak hour travel time frequency distribution for Project B 
westbound.

Figure B.28. Peak hour travel time frequency distribution for Project C.



202

Figure B.29. Peak hour travel time frequency distribution for Project E.

Figure B.30. Peak hour travel time frequency distribution for Project E2.
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Figure B.31. Peak hour travel time frequency distribution for Project G.

Figure B.32. Peak hour travel time frequency distribution for Project H.



204

Table B.23. Performance Measure Comparisons for Project B Eastbound

Travel Time 
Index Buffer Index

Planning Time 
Index Skew Statistic Misery Index

On-Time at  
45 mph (%)

Time Period Before After Before After Before After Before After Before After Before After

Peak hour 1.74 1.09 0.44 0.37 2.51 1.49  0.84 144 3.08 2.11 0.23 0.91

Peak period 1.55 1.06 0.52 0.28 2.36 1.35  1.48 3,943 2.94 1.93 0.38 0.94

Counterpeak 1.23 1.01 0.63 0.02 2.00 1.03 22.73  3.13 2.55 1.20 0.79 0.99

Midday 1.09 1.01 0.12 0.05 1.22 1.06  2.08 18.89 1.80 1.15 0.96 1.00

Weekday 1.23 1.03 0.63 0.07 2.00 1.10 14.32 67.32 2.55 1.26 0.83 0.98

Table B.24. Performance Measure Comparisons for Project B Westbound

TTI Buffer Index
Planning Time 

Index Skew Statistic Misery Index
On-Time at  
45 mph (%)

Time Period Before After Before After Before After Before After Before After Before After

Peak hour 1.76 1.10 0.68 0.38 2.96 1.52  1.87 75.13 3.70 1.93 0.28 0.91

Peak period 1.86 1.12 0.65 0.36 3.07 1.52  1.55 15.56 3.71 1.90 0.25 0.89

Counterpeak 1.06 1.00 0.19 0.01 1.26 1.01 14.50  2.13 1.87 1.08 0.94 1.00

Midday 1.12 1.01 0.68 0.02 1.88 1.03 22.78  4.13 2.47 1.18 0.90 0.99

Weekday 1.28 1.04 0.97 0.17 2.52 1.22 70.60  2.14 3.31 1.41 0.83 0.98

Table B.25. Performance Measure Comparisons for Project C

TTI Buffer Index
Planning Time 

Index Skew Statistic Misery Index
On-Time at  
45 mph (%)

Time Period Before After Before After Before After Before After Before After Before After

Peak hour 3.15 2.08 0.76 1.33 5.53 4.85 0.87  4.60 6.64 6.00 0.10 0.34

Peak period 2.68 1.85 0.90 1.32 5.09 4.30 1.19  4.30 6.13 5.47 0.16 0.41

Counterpeak 1.51 1.39 0.58 0.76 2.39 2.45 1.87  9.82 3.32 3.22 0.43 0.66

Midday 1.29 1.10 0.59 0.40 2.04 1.53 44.10  4.06 2.70 1.98 0.66 0.93

Weekday 1.46 1.27 1.27 0.83 3.32 2.33 88.01 21.69 4.43 3.64 0.75 0.85

Table B.26. Performance Measure Comparisons for Project E

TTI Buffer Index
Planning Time 

Index Skew Statistic Misery Index
On-Time at  
45 mph (%)

Time Period Before After Before After Before After Before After Before After Before After

Peak hour 1.69 1.09 0.34 0.38 2.27 1.51  0.61  12.15 2.54 1.85 0.23 0.91

Peak period 1.70 1.11 0.34 0.44 2.28 1.59  0.56  12.69 2.51 1.90 0.23 0.90

Counterpeak 1.09 1.02 0.43 0.08 1.56 1.10 22.77 143.45 2.03 1.24 0.91 0.99

Midday 1.15 1.02 0.67 0.08 1.91 1.10 52.37  23.95 2.20 1.26 0.85 0.99

Weekday 1.18 1.04 0.70 0.12 2.01 1.16 78.39  43.23 2.27 1.37 0.86 0.98
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Table B.27. Performance Measure Comparisons for Project E2

TTI Buffer Index
Planning Time 

Index Skew Statistic Misery Index
On-Time at  
45 mph (%)

Time Period Before After Before After Before After Before After Before After Before After

Peak hour 1.23 1.11 0.72 0.32 2.12 1.47 52.27 58.17 2.70 1.87 0.81 0.91

Peak period 1.19 1.09 0.72 0.32 2.04 1.43 851.50 7.14 2.59 1.82 0.85 0.92

Counterpeak 1.01 1.01 0.00 0.00 1.01 1.00 0.50 0.50 1.14 1.12 0.99 0.99

Midday 1.00 1.00 0.01 0.00 1.01 1.00 2.13 0.50 1.07 1.08 1.00 0.99

Weekday 1.04 1.02 0.14 0.08 1.18 1.10 7.13 3.13 1.52 1.27 0.98 0.99

Table B.28. Performance Measure Comparisons for Project G

TTI Buffer Index
Planning Time 

Index Skew Statistic Misery Index
On-Time at  
45 mph (%)

Time Period Before After Before After Before After Before After Before After Before After

Peak hour 2.64 3.27 1.09 0.56 5.52 5.09  1.83  0.94 6.57 5.72 0.25 0.03

Peak period 2.38 2.78 1.25 0.72 5.37 4.77  2.30  0.89 6.43 5.47 0.35 0.09

Counterpeak 1.10 1.14 0.57 0.11 1.73 1.26  51.23  1.29 2.34 1.43 0.95 0.98

Midday 1.21 1.50 1.03 0.82 2.45 2.73  33.09  3.04 3.28 3.70 0.89 0.53

Weekday 1.40 1.63 1.47 1.22 3.45 3.62 112.22 12.55 4.85 4.43 0.84 0.67

Table B.29. Performance Measure Comparisons for Project H

TTI Buffer Index
Planning Time 

Index Skew Statistic Misery Index
On-Time at  
45 mph (%)

Time Period Before After Before After Before After Before After Before After Before After

Peak hour 1.77 1.37 0.24 0.89 2.20 2.58 0.42 10.47 2.54 4.10 0.15 0.75

Peak period 1.77 1.41 0.25 1.06 2.22 2.91 0.39 12.94 2.63 4.37 0.17 0.72

Counterpeak 1.76 1.26 0.38 0.55 2.43 1.95 0.62  9.66 0.29 2.35 0.29 0.80

Midday 1.09 1.06 0.13 0.09 1.23 1.16 3.03  4.75 1.72 1.23 0.96 0.99

Weekday 1.34 1.16 0.63 0.51 2.19 1.75 20.07 14.68 2.44 2.76 0.78 0.93

Table B.30. Crash Characteristics on Atlanta Highways Affected by TRIP Program,  
2007 to 2008

Crash Type Year
Number of 
Crashes

Average Incident 
Duration (min)

Lane Hours 
Lost

Lane Hours Lost 
Per Crash

Nonlarge-truck crashes 2007 3,823 48.5 2,909 0.761

2008 4,057 47.0 2,656 0.655

Difference (%) +6.1 -3.1 -8.7 -14.0

Large-truck crashes 2007 417 88.9 852 2.043

2008 420 77.4 778 1.852

Difference (%) +0.7 -12.9 -8.7 -9.3

All truck crashes 2007 4,240 52.5 3,761 0.887

2008 4,477 49.8 3,433 0.767

Difference (%) +5.6 -5.1 -8.7 -13.6
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completion). Median trip time showed a similar reduction. In 
addition to a drop in average travel times, the overall reliability 
of travel on that freeway route improved; on days with outlier 
travel times at the 80th, 90th, and 95th percentile levels, the 
peak period travel times dropped at each of those levels.

The reduction in outlier travel times and the resulting 
improvement in travel time reliability were reflected in the 
overall likelihood of encountering a congested trip on that 
route on any given weekday (congested trip was defined as a 
trip with an overall trip speed of 35 mph or less); that likeli-
hood dropped significantly, from 65% before construction to 
39% after the additional GP lane was opened. The TTI and 
Planning Index also dropped, reflecting the changes in mobil-
ity and reliability, but the Buffer Index was largely unchanged.

Figure B.33 illustrates that the reduction in the frequency 
of congestion is significant throughout much of the a.m. 
peak period.

is a significant suburban employment center that includes, 
most notably, Microsoft’s headquarters. Before construc-
tion, there were three GP lanes and one inside high-occupancy 
vehicle (HOV) lane in the segment of interest. This  
project added a fourth GP lane, as well as on-ramp 
improvements.

Results

After the opening of the additional southbound GP lane in the 
Kirkland area north of Bellevue, congestion was reduced, and 
travel times decreased and became more reliable. Table B.31 
summarizes the change in travel time statistics for a typical 
16-mile freeway commute route to downtown Bellevue that 
includes the construction segment. The results show a drop in 
the average a.m. peak period travel time from 31 minutes 
(before construction start) to 27 minutes (after construction 

Table B.31. Travel Time Data for Typical I-405 Trip Route During A.M. Peak Period

A.M. Peak Period Travel Time (min) A.M. Peak Period

Average Median
80th 

Percentile
90th 

Percentile
95th 

Percentile Skew

Frequency of 
Congestion 
(<35 mph)

Travel 
Time 
Index

Buffer 
Index

Planning 
Index

2005 (before 
construction)

31 30 37 40 44 0.50 65% 1.9 45% 2.8

2007 (during 
construction)

32 31 39 45 49 0.82 69% 2.0 52% 3.1

2008 (after 
construction)

27 26 32 37 41 1.53 39% 1.7 49% 2.5

Note: Travel times were based on a typical 16-mile southbound trip from Lynnwood to the Bellevue CBD that included the construction segment. Travel times were 
averaged over a 6:00 to 9:00 a.m. peak period. The time period each year was fixed (January to June, weekdays only) to minimize effects of seasonal variations.

Figure B.33. Reductions in frequency of congestion and average travel time.
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NE 85th (traffic is moving from bottom to top in the dia-
grams). Although congestion upstream from that segment has 
lessened, congestion persists just downstream from the con-
struction location, indicating a possible bottleneck south of 
the construction segment where the additional lane stops. (In 
Stage 2 of this project, plans call for an extension of the Stage 1 
GP lane an additional mile to the south.)

The congestion benefit from this project extended upstream 
from the construction segment for up to 6 miles along the 
corridor. A comparison of time–space diagrams of the average 
speed along the trip route before versus after the new lane was 
opened (Figure B.34) shows how the magnitude and duration 
of upstream congestion was reduced during the a.m. peak 
period after the addition of the GP lane between NE 124th and 

Figure B.34. Average speed in (top) 2007 and (bottom) 2008.
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two GP lanes and one inside HOV lane in the segment of 
interest. This project added a third GP lane.

Results

The opening of the additional GP lane resulted in noticeably 
reduced travel times and higher travel time reliability, as well 
as reduced congestion. Figure B.35 illustrates the drop in 
average a.m. peak period travel times after the opening of the 
additional GP lane for a typical 13-mile northbound freeway 
commute route that included the construction segment.

Table B.32 summarizes the change in travel time statistics 
for the 13-mile northbound trip route. Average a.m. peak 
period travel time dropped significantly compared with the 

I-405 Northbound in Bellevue, Washington

Background

The south segment of the I-405 South Bellevue Widening 
project expanded capacity at a bottleneck location on I-405 
on the east side of Lake Washington by adding a new auxiliary 
GP lane. The project location was a 2-mile northbound urban 
freeway segment of I-405 that is part of a freeway commute 
route that experiences heavy volumes and congestion during 
the a.m. peak period as traffic approaches the central business 
district of Bellevue, a major suburban city, as well as a nearby 
interchange with I-90, a major east–west freeway that pro-
vides access to downtown Seattle (westbound) and eastern 
Washington (eastbound). Before construction, there were 

Figure B.35. Average a.m. peak period travel time by day.

Table B.32. Travel Time Data for Typical I-405 Trip Route During A.M. Peak Period

A.M. Peak Period Travel Time (min) A.M. Peak Period

Average Median
80th 

Percentile
90th 

Percentile
95th 

Percentile Skew

Frequency of 
Congestion 
(<35 mph)

Travel 
Time 
Index

Buffer 
Index

Planning 
Index

2007 (before 
construction)

35 35 40 43 45 -0.11 92% 2.6 31% 3.4

2008 (during 
construction)

32 31 40 44 46  0.41 85% 2.4 43% 3.4

2009 (after 
construction)

21 19 26 28 30  1.26 31% 1.5 44% 2.2

Note: Travel times were based on a typical 13-mile northbound trip from Tukwila to the Bellevue CBD that included the construction segment. Travel times were aver-
aged over a 6:00 to 9:00 a.m. peak period. The time period each year was fixed (mid-January to mid-April, weekdays only) to minimize effects of seasonal variations.
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on any given weekday dropped sharply, from 85% to 92% in 
previous years to 31% after construction. Figure B.36 illus-
trates that the improvement in the likelihood of having a 
heavily congested trip is significant throughout the a.m. peak 
period, and continues during the shoulder of the peak period 
after 9:00 a.m.

Interchange of I-405 Southbound  
and SR 167 in Renton, Washington

Background

This project built a grade separation ramp connecting the 
southbound I-405 off-ramp with the southbound SR 167 on-
ramp. The project location was an interchange of two major 
north–south roadways (I-405 and SR 167) in Renton, Wash-
ington, just south of Seattle. The interchange experiences 
heavy volumes and congestion during the p.m. peak period 
commute. The I-405/SR 167 interchange was one of the worst 
traffic bottlenecks in the region. This interchange, initially 
designed as a cloverleaf interchange, became a large bottle-
neck with increasing traffic volumes and merging conflicts. In 
the previous lane configuration, traffic using the collector–
distributor lane to exit from southbound I-405 to southbound 
SR 167 was forced to weave with traffic entering the collector– 
distributor from northbound SR 167. These merging conflicts 
created increased congestion on both southbound I-405 and 
northbound SR 167. The new grade separation ramp elimi-
nated the weaving movements by providing a separate elevated 
lane for the I-405 southbound off-ramp to SR 167.

previous 2 years, down from 32 to 35 minutes to 21 minutes 
after the opening of the new lane. There was a similar reduc-
tion in median trip time.

In addition to a drop in average travel times, the overall 
reliability of travel on that freeway route was significantly 
enhanced. A review of days with outlier travel times at the 
80th, 90th, and 95th percentiles showed that average peak 
period travel times dropped significantly at each of those lev-
els. In fact, the new 95th percentile travel time dropped below 
the previous average travel time. The skew factor grew, but 
this was more a function of the significant drop in the central 
tendency of the travel time distribution rather than a higher 
frequency of outlier travel times.

Table B.32 also summarizes the change in the TTI, Buffer 
Index, and Planning Index values for the a.m. peak period. In 
this research TTI = (average a.m. peak period travel time)/
(off-peak travel time at 60 mph); Buffer Index = (95th per-
centile a.m. peak period travel time - average a.m. peak 
period travel time)/(average travel time) * 100; and Planning 
Index = (95th percentile a.m. peak period travel time)/(off-
peak travel time at 60 mph).

The TTI and Planning Index both dropped noticeably, 
reflecting the reduced average and 95th percentile trip times 
and the resulting higher travel time reliability. The Buffer 
Index was essentially unchanged, but the buffer percentage 
value was relative to a significantly smaller average travel time.

Travel time reliability also can be expressed in terms of the 
likelihood that a traveler will encounter heavy congestion. 
Table B.32 shows that the likelihood of having a heavily con-
gested trip (overall trip speed 35 mph or less) on that route 

Figure B.36. Reductions in frequency of congestion and average travel time.
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to December 31, 2002) in an effort to minimize the effects of 
seasonal variation.

Figures B.37 and B.38 display before-and-after speed con-
tours centered near the interchange location; southbound 
traffic is moving from bottom to top in each figure. The new 
ramp significantly reduced the bottleneck at the interchange. 

Results

Six months of weekday data from before and after the  
completion of the ramp were analyzed. Study dates of 
July 1 to December 31, 2003, were selected and compared 
with the same 6-month period of the previous year (July 1 

Figure B.37. Time–space speed contours of original interchange  
configuration in 2002.

Figure B.38. Time–space speed contours of interchange after installation 
of grade separation ramp.
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with the previous year. The same increase was recorded for the 
median speed.

The overall reliability of travel on that freeway segment 
also improved. A review of days with outlier average peak 
period speeds at the 80th, 90th, and 95th percentiles showed 
that speeds went up by approximately 6 to 7 mph at each of 
those levels. Furthermore, the likelihood of encountering a 
congested trip (overall trip speed of 35 mph or less) on the 
segment on any given day dropped sharply, from 67%  
to 36%.

Figure B.39 illustrates that the improvement in congestion 
was significant throughout the afternoon. The figure repre-
sents travel times and frequency of congestion on an extended 
I-405 segment that includes the interchange area. The 11-mile 

In 2002, average speeds approaching the interchange stayed 
below 35 mph for the entire afternoon and evening 
(10:30 a.m. to 6:30 p.m.) and dropped below 25 mph for 
approximately 3 hours (1:30 p.m. to 4:30 p.m.). After the off-
ramp was separated, average speeds in 2003 never dropped 
below 25 mph. In addition, the duration of congestion was 
reduced by more than one-half; average speeds do not fall 
below 35 mph until 1:30 p.m., and only stay at that level until 
5:00 p.m.

Table B.33 summarizes the change in p.m. peak period 
speed statistics for the 4.59-mile trip displayed in the con-
tours in Figures B.37 and B.38. The route extends on I-405 
from SR 900 to I-5. The results show an 8-mph increase (from 
29 to 37 mph) in the average a.m. peak period speed compared 

Table B.33. Speed Data for Trip Segment During P.M. Peak Period

P.M. Peak Period Speed (mph)
Frequency of 
Congestion 
(<35 mph)Average Median

80th 
Percentile

90th 
Percentile

95th 
Percentile

2002 29 30 24 21 20 67%

2003 37 38 31 28 26 36%

Change (%) 25 26 32 28 31 -31%

Note: Speeds are based on the 4.59-mile trip from SR 900 to I-5 and were averaged over a 3:00 to 7:00 p.m. 
peak period. The time period each year was fixed (July 1 to December 31, weekdays only) to minimize effects of 
seasonal variations.

Figure B.39. Reductions in frequency of congestion and average travel time.
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were over 100% longer than free-flow speeds, but in 2003, they 
were only 60% longer.

The grade separation ramp also significantly improved 
mainline throughput near the interchange. The bottleneck 
restricted the flow of vehicles through the segment. Table B.37 
illustrates the freeway volumes just upstream of the inter-
change. Freeway volumes increased significantly throughout 
the p.m. and by 16% to 19% during the most congested 
period of the evening commute (3:00 to 5:00 p.m.).

Current State

In the 6 years since the ramp was completed, traffic condi-
tions throughout the I-405 corridor have steadily declined. 
Figure B.40 shows the average speeds at the I-405/SR 167 
interchange using data from July 1 to December 31, 2008. 
Peak period speeds are approaching conditions similar to 
those before the ramp installation. Speeds drop below 25 mph 
for approximately 2 hours (versus 2 hours in 2002). However, 
off-peak speeds are still improved from the preramp condi-
tions. In 2002, off-peak speeds dropped below 35 mph by 
10:30 a.m. In 2008, speeds did not begin dropping below 
35 mph until about 1:15 p.m.

trip extends from the major interchange at I-90 to the inter-
change at I-5. The travel time curves show that travel time 
improvements as a result of the new ramp were not restricted 
to the peak period. Travel times during the off-peak early 
afternoon were approximately 3 minutes faster after the ramp 
installation. In addition, the frequency of congestion histo-
grams shows that the onset of congestion on the segment was 
delayed until later in the afternoon.

Table B.34 displays travel time statistics for the p.m. peak 
period for the trip from I-90 to I-5. Mobility and reliability 
measures in Table B.35 were calculated based on the average, 
95th percentile, and free-flow (trip time based on 60 mph) 
travel times. TTI compares the average travel time during the 
peak period to the free-flow travel time. The construction of 
the ramp resulted in increased mobility and a reduction  
in TTI. The Buffer Index and Planning Index, which measure 
the reliability of a trip, showed reliability improvements after 
the construction of the ramp. The Buffer Index measures the 
amount of extra time a traveler should budget to ensure an 
on-time arrival 95% of the time. In 2002, a traveler would have 
needed to budget an extra 7 minutes; with the new ramp, the 
traveler needed to budget less than 5 minutes extra. These 
improvements were more pronounced when focused specifi-
cally on the segment most affected by the ramp. Table B.36 
displays the mobility and reliability indices for the 4.59-mile 
segment near the ramp. TTI for the shorter segment dropped 
from 2.04 to 1.63, meaning that in 2002, average travel times 

Table B.34. Mobility and Reliability Measures  
for 11.08-Mile Trip from I-90 to I-5

P.M. Peak Period (3:00 to  
7:00 p.m.) Travel Time (min)

Average
95th 

Percentile
Free 
Flow

2002 (old ramp configuration) 18.9 26.0 11.08

2003 (after installation of grade 
separation ramp)

17.8 22.5 11.08

Table B.35. Mobility and Reliability Measures  
for 11.08-Mile Trip from I-90 to I-5

P.M. Peak Period  
(3:00 to 7:00 p.m.)

TTI
Buffer 
Index

Planning 
Index

2002 (old ramp configuration) 1.71 37% 2.35

2003 (after installation of grade 
separation ramp)

1.61 26% 2.03

Table B.36. Mobility and Reliability Measures 
for 4.59-Mile Trip Near Ramp

P.M. Peak Period  
(3:00 to 7:00 p.m.)

TTI
Buffer 
Index

Planning 
Index

2002 (old ramp configuration) 2.04 48% 3.01

2003 (after installation of 
grade separation ramp)

1.63 41% 2.31

Table B.37. I-405 Volumes Near I-405/SR 
167 Interchange

I-405 Southbound Throughput (vehicles/hour)

Time Period 2002 2003 Change (%)

12:00 to 1:00 p.m. 3,057 3,529 15

1:00 to 2:00 p.m. 3,015 3,538 17

2:00 to 3:00 p.m. 2,952 3,466 17

3:00 to 4:00 p.m. 2,752 3,271 19

4:00 to 5:00 p.m. 2,743 3,187 16

5:00 to 6:00 p.m. 2,804 3,220 15

6:00 to 7:00 p.m. 2,869 3,236 13
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on the east side of the lake, as well as business development 
on the east side (e.g., Microsoft). In August 2001, WSDOT 
began to use the ramp meters to try to alleviate heavy east-
bound morning congestion.

Results

Six months of weekday data from before and after the initia-
tion of morning ramp metering were analyzed. Study dates of 
January 1 to June 28, 2002, were compared with the same 
6-month period of the previous year (January 1 to June 29, 
2001) in an effort to minimize the effects of seasonal 
variation.

Table B.38 summarizes the change in speed statistics for 
the 4-mile eastbound section from I-5 to just east of the Ever-
green Point Floating Bridge. The results show an average 4 
mph (from 32 to 36 mph) increase in the average a.m. peak 
period speed compared with the previous year. The same 
increase was recorded for the median speed.

The overall reliability of travel on that freeway segment also 
improved. A review of days with outlier average peak period 
speed at the 80th, 90th, and 95th percentiles showed that speeds 
went up by approximately 4 mph at each of those levels.

The speed benefits from the ramp metering extended 
through the project segment. Figure B.41 shows before-and-
after speed contours of the segment affected by ramp meter-
ing. In 2001, average speeds near the ramps stayed below 
25 mph for over 1.5 hours. After ramp metering was initiated, 

Washington State DOT (WSDOT) has a current project to 
add a new interchange upstream of the grade separation 
ramp. This interchange is expected to improve access to 
downtown Renton and relieve some of the traffic demand at 
the I-405/SR 167 interchange.

effect of Ramp Metering  
in Seattle, Washington

SR 520 Eastbound

Background

The SR 520 Ramp Metering project managed congestion on 
the mainline by using ramp metering to control the frequency 
of vehicles entering the roadway on two on-ramps to SR 520 
eastbound.

SR 520 is one of two east–west roadways across Lake Wash-
ington, which forms the eastern boundary of Seattle. The 
roadway is heavily used by commuters in both directions. The 
traditional eastbound evening commute from downtown 
Seattle to the more suburban east side of Lake Washington via 
the SR 520 Evergreen Point Floating Bridge has been man-
aged by ramp meters on the on-ramps at Montlake and Lake 
Washington Boulevards (just before reaching the bridge) 
since 1986. Over the years, traffic conditions in what had tra-
ditionally been the reverse commute direction (i.e., east-
bound in the morning) worsened. This congestion was in 
part due to the growth of Bellevue, the major suburban city 

Figure B.40. Time–space speed contours in 2008 at I-405/SR 167 interchange.
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significant throughout the a.m. peak period, and it demon-
strates that ramp metering delayed the onset of congestion 
for the segment.

Ramp metering also improved the mainline throughput of 
the segment. Table B.39 illustrates the freeway volumes near 
the Montlake Boulevard on-ramp. Freeway volumes increased 
by 13% to 15% during the most congested period of the 
morning commute (7:00 to 9:00 a.m.).

Table B.40 displays travel time statistics for a typical com-
mute through the area affected by ramp meters, the 14.8-mile 
commute from Seattle to Redmond. Mobility and reliability 
measures were calculated based on average, 95th percentile, 
and free-flow (trip time based on 60 mph) travel times. TTI 
compares the average travel time during the peak period to 

average speeds in 2002 only dropped below 25 mph for a third 
of that time (approximately 30 minutes). In 2001, speeds 
dropped below 25 mph by 7:30 a.m.; in 2002, the onset of 
congestion was delayed by about 15 minutes. In addition to 
delaying the onset, the lowest average speeds did not drop 
below 20 mph in 2002; in contrast, during 2001 they dropped 
below 20 mph for about 20 minutes during the peak conges-
tion period.

The main goal of ramp metering is to reduce the conges-
tion on the mainline. Table B.38 shows that the likelihood of 
encountering a congested trip (overall trip speed of 35 mph 
or less) on the sample route on any given day dropped from 
63% to 45% after the implementation of ramp metering. Fig-
ure B.42 illustrates that the improvement in congestion was 

Figure B.41. Time–space speed contours.

Table B.38. Speed Data for Trip Segment During A.M. Peak Period

A.M. Peak Period Speed (mph)
Frequency of 
Congestion 
(<35 mph)Average Median

80th 
Percentile

90th 
Percentile

95th 
Percentile Skew

2001 32 32 27 26 24 -0.20  63%

2002 36 36 31 29 28  0.98  45%

Change (%) 12% 14% 16% 15% 13% -18%

Note: Speeds were based on the approximately 4-mile trip from I-5 to just east of the Evergreen Point Floating Bridge and 
were averaged over a 6:00 to 9:00 a.m. peak period. The time period each year was fixed (January 1 to June 30, weekdays 
only) to minimize the effects of seasonal variations.
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Table B.39. SR 520 Eastbound Throughput  
at Montlake Boulevard (vehicles/hour)

Time Period
January to 
June 2001

January to 
June 2002 Change (%)

6:00 to 7:00 a.m. 2,261 2,042 -10

7:00 to 8:00 a.m. 2,329 2,639  13

8:00 to 9:00 a.m. 2,128 2,454  15

9:00 to 10:00 a.m. 2,209 2,424  10

Table B.40. Travel Time Statistics for A.M. 
Commute from Seattle to Redmond

A.M. Peak Period (6:00 to 9:00 
a.m.) Travel Time (min)

Average
95th 

Percentile
Free 
Flow

2001 (before metering) 19.1 23.3 14.8

2002 (after metering) 18.6 22.2 14.8

Figure B.42. Reductions in frequency of congestion and average travel time.

the free-flow travel time. The Buffer Index and Planning 
Index both measure the reliability of a trip based on the 
amount of extra time a traveler should budget to ensure an 
on-time arrival 95% of the time. These indices only showed 
small mobility and reliability improvements after the addi-
tion of ramp metering (Table B.41). The travel time improve-
ments produced by the metered ramps may have been 

dampened by the rest of the trip, since the portion of the 
Seattle-to-Redmond route that is east of Lake Washington 
usually operates at near free-flow speeds. The travel time 
improvements were more pronounced when focused specifi-
cally on the segment most affected by the metering. Table B.42 
displays the mobility and reliability indices for the 4-mile seg-
ment near the ramp. TTI for the shorter segment dropped 

Table B.42. Mobility and Reliability Measures  
for 4-Mile Segment near the Ramps

A.M. Peak Period (6:00 to 9:00 a.m.)

Travel Time 
Index Buffer Index

Planning 
Index

2001 (before metering) 1.87 32% 2.46

2002 (after metering) 1.66 31% 2.17

Table B.41. Mobility and Reliability Measures  
for A.M. Commute from Seattle to Redmond

A.M. Peak Period (6:00 to 9:00 a.m.)

Travel Time 
Index Buffer Index

Planning 
Index

2001 (before metering) 1.29 22% 1.57

2002 (after metering) 1.25 20% 1.50
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Figure B.43. Time–space speed contours in 2008 on SR 520 segment 
affected by ramp metering.

from 1.87 to 1.66; that is, in 2001 travel times were over 87% 
longer than travel times at free-flow speeds, but in 2002, they 
were only 66% longer.

Current State

In the 7 years since the ramp metering was initiated, traffic 
conditions on SR 520 have steadily declined. Figure B.43 
shows the average speeds in the segment affected by ramp 
metering using data from January 1 to June 30, 2008. Peak 
period speeds are now slower than speeds seen in 2001 before 

metering. Speeds remain below 35 mph from 7:15 to 
10:00 a.m. and drop below 20 mph for almost 1.5 hours 
(versus 20 minutes in 2001). In addition, throughput vol-
umes are lower in 2008 than those seen immediately after 
starting ramp metering (2,589 vehicles/hour from 7:00 to 
8:00 a.m.; 2,308 vehicles/hour from 8:00 to 9:00 a.m.), 
although they are not as low as the premetering levels.

WSDOT is in the beginning stages of a new project to 
replace the SR 520 Evergreen Point Floating Bridge. A con-
tinuous HOV lane and rebuilt on- and off-ramps are planned 
to improve mobility and reliability on the roadway.
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A p p e n d i x  C

As a bystander, it is fairly easy to watch traffic flow around the 
location of an incident and identify the delay associated with 
that incident as the queue that forms at that location. As long 
as that queue remains in place, even if it moves up- or down-
stream as a result of shock waves and other physical phenom-
ena, all the delay can be associated with the observed incident. 
Even if that section of roadway might normally have a queue 
for a portion of the time the incident queue exists, all delay 
can be consider incident delay, which can then be compared 
in severity with the delay normally present for that roadway 
section. The difference in those conditions can be considered 
to have been caused by the incident.

When examine at a broader corridor level, however, the 
queues that form as a result of incidents can create different 
side effects that change the travel time experienced by motor-
ists in the corridor. In some cases, the incident queue reduces 
downstream traffic volumes, allowing traffic to flow more 
smoothly. In other cases, the release of a queue that has formed 
behind a major accident can create a traffic volume wave when 
that accident scene is removed, and that wave can create one 
or more secondary queues downstream of the accident loca-
tion. This condition is illustrated in Figure C.1, which shows 
(in black) the downstream movement of congestion caused 
when a pulse of vehicles flows downstream after having been 
released from a major accident scene. These secondary queues 
also are incident caused even though they are located at points 
removed from the location of the actual incident.

Visually, these effects can be identified on a case-by-case 
basis, so long as sufficient data are present. Mathematically, 
for very large data sets, and when only summary statistics 
(e.g., corridor travel time, vehicle miles traveled, or vehicle 
hours traveled) are available, this task becomes much more 
difficult. Part of the mathematical problem is that incident-

caused delay can last considerably longer than the incident 
itself and can extend to geographic regions far removed from 
the incident location itself. In Figure C.1, for example, the 
actual incident lasted from 5:30 to 7:00 a.m. and occurred at 
a location just east of where traffic detection starts in the cor-
ridor, essentially to the left and above the black congestion 
blob in the figure. Figure C.1 does not show what happened 
during the incident; rather it shows the lingering effects of a 
severe incident after it has been cleared. An additional difficulty 
is that the geographic and temporal extent of the incident-
caused delay is a function of the background traffic condi-
tions within which the incident occurs. Compounding this 
difficulty is how travel times, which occur over extended times 
and spaces, differ from incidents, which occur in narrow tem-
poral and geographic spaces.

The problem of associating an incident with a trip travel 
time is best explained with an example. Assume that the cor-
ridor being studied is 10 miles long (extending from Milepost 0 
to Milepost 10), and the free-flow speed is 60 mph. Under free-
flow conditions a car traverses the corridor in 10 minutes. An 
accident occurs at Milepost 6 at 8:00 a.m. and lasts 3 minutes, 
until 8:03 a.m. A car traveling the length of the corridor start-
ing at Milepost 0 at 8:00 will be affected by this incident, even 
though the incident has been cleared before the car’s arrival 
at the scene, because the car starting its trip at 8:00 a.m. must 
travel through the queue formed by the accident. But impor-
tantly, a car starting on that same trip at 7:55 (5 minutes 
before the accident takes place) also will be affected by the 
incident, because even at free-flow speeds, that car is only at 
Milepost 5 at 8:00 a.m. when the accident occurs. However, 
if that same accident occurs at Milepost 1, instead of Mile-
post 6 (both inside the study corridor) the 7:55 trip will not 
be affected, but the 8 a.m. trip will be.

Computation of Influence Variables, Seattle 
Analysis: Mechanisms for Determining  
When an Incident Affects Travel Time  
and Travel Time Reliability
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Figure C.1. Extra congestion caused by release of traffic delayed behind a major accident scene on westbound I-90.
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The other difficulty with associating incidents and specific 
trips is understanding the duration of the congestion that 
forms as a result of that incident. In the above example, the 
queue formed (or disruption caused) by the 8:00 a.m. acci-
dent may last anywhere from zero additional minutes to sev-
eral hours. If the 8:00 a.m. accident occurs in the middle of 
the a.m. commute period, the queue associated with that 
accident may last a full hour before traffic volumes reduce 
enough to allow the queue to dissipate. But if traffic volumes 
are light that morning, the queue may dissipate immediately. 
Thus a trip starting at 8:30 a.m. on this same corridor may or 
may not be influenced by the 8:00 a.m. accident, depending on 
the background traffic conditions occurring on the corridor 
and the nature of the accident itself.

Thus, without a detailed and complex data set and analysis 
algorithm for identifying time- and day-specific speeds, along 
with that same level of detail for when and where incidents 
occur within a corridor, it is impossible to directly associate 
any given trip with a given incident. This level of detail was 
not available to the study team for this analysis.

Consequently, no simple algorithm was identified that could 
identify which travel time (or vehicle miles traveled or vehicle 
hours traveled) measures for a given corridor were directly 
influenced by a given incident. As a substitute, this project 
developed three methods for defining the extent to which delay 
or trip travel time is influenced by any given incident. Each 
method has strengths and weaknesses. Taken together they 
are reasonably explanatory for how incidents affect travel 
time and travel time reliability. The three measures selected 
are defined as follows:

•	 Active influence assumes that any trip that starts into the 
corridor during a time period that contains an active inci-
dent is affected by that incident. Since travel time data were 
available on a 5-minute basis for L03, this method of asso-
ciation worked as follows: if an incident occurred from 8:04 
to 8:08 a.m., trips with start times of 8:00 and 8:05 a.m. 
were associated with this incident. No other trips were 
considered to be influenced by this incident.

This measure is the most restrictive of the methods used 
to associate incidents with travel times. All trips assumed to 
be influenced by an incident in this method are known to be 
influenced by incident-caused queues (if any form), but the 
method will miss some of the earliest trips influenced by the 
incident, and it will miss later trips that are influenced by 
the residual queue left after the incident has been cleared.

•	 Time extended influence assumes all incidents happen in 
the center of the study segment; this method extends the 
influence period earlier in time equal to the time it takes 
to drive half the corridor at free-flow speed. In addition, it 
assumes that influence extends an additional 20 minutes 
after any given incident ends. Using the 8:04 to 8:08 a.m. 

accident from the active influence example above, this 
method assumes that the incident’s influence extends from 
trips starting at 7:59 a.m. to those ending at 8:28; that is, 
the 7:55 a.m. trip is the first affected, and the 8:25 a.m. trip 
is the last affected. This is an extension of three 5-minute 
time periods after the last period in which the incident was 
actually active. This technique makes the 20-minute exten-
sion (which is the origin of the 5+20 name in the data spread-
sheet) appear to be a 5+15 time-period extension.

Although the time extended methodology will miss a 
few incident-influenced trips when incidents occur at the 
far-upstream portion of the study corridor segment, it will 
capture the majority of the trips that are influenced by the 
formation of the incident-caused queue. It also will capture 
a significant portion of trips that are affected by residual 
queues. If those queues are nonexistent or short lived, it will 
overestimate the influence of a given incident. However, since 
the intent of this analysis is to capture the effect of incidents 
on trip reliability, overestimating the number of fast trips that 
have incident influence is less important than making sure 
that all very slow trips are associated with their causes. Thus 
this bias is assumed to be acceptable.

•	 Queuing extended influence assumes that once an incident 
occurs, any travel time increase on the corridor is at least 
partly associated with the (potential) queue that forms as 
a result of that incident. This method assumes that any 
increase in travel time that occurs while an incident is active 
is associated with that incident.

The queue extended influence approach selects the fastest 
corridor travel time experienced before and during the inci-
dent. All subsequent travel times are assumed to be influ-
enced by that incident until corridor travel times return to 
that fastest time. Once a measured travel time faster than the 
reference travel time is observed after the time extension has 
ended, the influence of that disruption has ended.

The time extended influence definition is used to define 
the time periods from which the reference (fastest) travel 
time is selected. Note that the queue extension approach was 
originally tested using the 5+20–minute version of the 
time extension approach. It was then recomputed with new 
variables, including a more simple time extension defini-
tion of a one-time period before the disruption and a one-
time period after the disruption has been cleared. These 
queue extension variables use the term 5+5 in their variable 
definition to reflect the 5 minutes before and the 5 minutes 
after the recorded incident time.

In off-peak (low-volume and/or low-capacity) condi-
tions, the queue extension approach is an excellent measure 
of incident effects. If the incident occurs at the beginning of 
peak period conditions, the queue extension approach is 
likely to associate all of the peak period congestion with the 
incident. Although this may overstate the extent of any given 
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incident’s congestion-causing influence, it is difficult to 
separate out the lasting influence of the incident on bottle-
neck formation, even when detailed statistics are available. 
Queuing extended influence is thus assumed to be a reason-
able liberal measure of the effects of incidents on the travel 
times experienced by motorists.

None of these measures is perfect. Taken together, however, 
they are descriptive of the degree to which congestion and 
delay are related to incident occurrences.

By tracking all travel times influenced by a disruption, it 
is possible to identify the wide range of impacts a single dis-
ruption causes. The extra delay a trip experiences as a result 
of any given disruption changes depending on the time 
(relative to the formation of the queue) that a given trip 
arrives at the queue caused by the disruption. That queue 
grows from nothing to its largest extent, and then shrinks 
back to nothing. If the trip being monitored arrives at the 
beginning or end of the queue formation, the added delay 

experienced is modest. If it arrives at the height of the queue, 
its delay is the maximum experienced.

The methodologies described above associate each 5-minute 
average travel time with an incident or nonincident condition. 
The result is that some of these measured travel times experi-
ence the shoulders of the incident queues, and some experience 
the maximum queue. The result is an ability to monitor the 
entire spectrum of delays associated with each incident. It is 
therefore possible to explore the different travel times associated 
with any given incident, and if desired, select the maximum 
travel time associated with that incident. The trip with the larg-
est travel time is assumed to be the trip made most unreliable 
as a result of that particular incident.

In general, the findings presented in the body of this report 
concentrate on using the queue extended (5+5) measure of 
influence. The Washington State Transportation Center proj-
ect team at the University of Washington considers the queue 
extended measure as the best measure of incident influence; 
it also is the measure of maximum influence.
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A p p e n d i x  d

This appendix describes the variables that are present in the 
data sets developed as part of the analysis of congestion causes 
performed by the University of Washington’s Washington State 
Transportation Center (TRAC-UW). This work was performed 
as part of the SHRP 2 L03 project.

As noted in the main report, raw data were obtained from a 
variety of sources. Time, date, and location information (state 
route and mile post) were used to combine the various data 
items. Data were stored in a flat file record format, where each 
record in a file represents all data present for a specific five-
minute interval in the year 2006 for a given direction for a given 
study segment. Consequently, each file contains 105,120 records 
of data. Because a separate file is used for each direction for each 
study corridor, there are 42 of these summary files produced for 
the SHRP 2 L03 project.

The primary data storage and analysis system was Micro-
soft Excel. (This effort is compatible with the 2007 version of 
Microsoft Office or any version thereafter, because the num-
ber of records present in each file exceeds the allowable limit 
for earlier versions of Excel.) For a wide variety of analyses, 
these records also were read into various statistical packages 
(SPSS, SAS, and R), which allowed efficient computation of 
statistical tests.

While a more capable database management system would 
be far more useful in the long term, the use of Excel allowed 
far easier development, testing, and analysis of derived statis-
tics. Many of the statistics present in the analysis database are 
dependent on one or more data items from one or more prior 
time periods on that roadway segment. In Excel it was relatively 
easy to create these variables, test the variables, and visually 
examine how the variables reacted to changing traffic condi-
tions (e.g., high/low volume and high/low speeds). It also was 
possible to easily find and examine how new test variables 
changed over time, given multiple different secondary inputs. 
It also is easy to identify specific anomalies (e.g., time periods 
with large amounts of congestion, but no traffic disrup-
tions noted by a newly computed test variable, and track the 

performance of that computation over time). This process 
allowed the research team to identify specific computational 
techniques that did not work consistently. It also produced a 
better analysis database.

Note that the actual Excel computational formulas are not 
all included in these final datasets. Including all of the com-
putations causes Excel to exceed the number of computations 
allowed in a single file. This causes unstable behavior within 
Excel. Consequently, once a computational variable was deter-
mined to work as intended, the data resulting from that latest 
series of computations was converted from an active Excel for-
mula (i.e., recomputed each time variables were recomputed 
within Excel) to a constant. This was normally accomplished 
by simply saving the dataset as a CSV file and reimporting those 
values into a new Excel file. In other cases, especially cases where 
very complex, logical processes were necessary to compute new 
row values, a separate computational spreadsheet was used to 
produce one or more new columns of data. These were then 
cut-and-pasted into the primary analysis spreadsheets.

The following variables can be found in the final data sets 
developed and used in the L03 project by TRAC-UW (see 
Table D.1). In some datasets, specific variables were not com-
puted. When this occurs, the term empty is included in the 
variable name column, indicating that this variable does not 
exist for the spreadsheet being examined.

Queue Extended Influence

Mathematically, the queue extended influence method assumes 
that any increase in travel time that occurs while an incident 
is active is associated with that incident. That is, if travel times 
increase over the travel time experienced at any time during 
an incident, that longer travel time is caused (at least in part) 
by the incident, even if other events are occurring in the 
corridor. An incident is defined as being active in two ways: 
1) the incident is actually recorded as taking place within 
that specific five-minute period; and 2) a trip that entered 

Seattle Analysis: Variable Definitions
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Table D.1. Data Items Used in the Seattle Congestion-by-Source Analysis

Column Variable Name Definition

A link_name Roadway and Direction.

B direction East, West, North, or South.

C Date Date (M/D/Yr).

D Time 0:00 to 23:55 in 5-minute increments.

E Decimal Time Time expressed as a decimal.

F Hour The hour of the day.

G Day of Week Numeric day with 1 = Sunday to 7 = Saturday.

H Month Numeric month with 1 = January to 12 = December.

I Day Numeric day from 1 to 31 of each month.

J [route]_[segment]_TT[dir] Travel Time [direction] on [route], [segment] section.

K avg_occupancy Average Occupancy from Operation Archive.

L avg_vht Average VHT from Operation Archive.

M avg_volume Do not use, not a good value.

N Accident Severity Severity of Accident (1 = PDO, 2 = injury, 3 = fatal).

O Accident Accident Variable, equal 1 when an accident occurred.

P Accident Severity (Calc) The total number of 5-minute time periods during which a queue, influenced by a given 
accident lasts. (Value exists only for the first 5-minute period during which the  
accident occurs.)

Q Max_closure_length Maximum duration closure of lane(s) from Operation Archive.

R Closure Severity The total number of 5-minute time periods during which a queue, influenced by a given 
lane closure lasts. (Value exists only for the first 5-minute period during which the  
closure occurs.)

S Max_incident_length Maximum duration of incident from Operation Archive.

T Incident Severity The total number of 5-minute time periods during which a queue, influenced by a given 
incident lasts. (Value exists only for the first 5-minute period during which the incident 
occurs.)

U Accident Rubbernecking Has a value of 1 whenever there is an accident on the other side of the road.

V Incident Rubbernecking Has a value of 1 whenever there is an incident on the other side of the road.

W Delay Variable Computed Vehicle delay (Actual Travel Time—Free Flow Travel Time) * Maximum  
Section Volume.

X IF Variable Variable describing event effects present during that 5-minute time period:
0.  No cause of congested noted in available variables;
1.  ONLY Acc Queue Extended is present;
2.  ONLY Inc Queue Extended is present;
3.  ONLY Precipitation hour is present (it has rained in the past hour);
4.  BOTH Acc Queue Extended and Inc Queue Extended are present;
5.  BOTH Acc Queue Extended and Precipitation hour are present;
6.  BOTH Inc Queue Extended and Precipitation hour are present; and
7. All three variables are present.

Note: This variable is based on the 5+15 queue extended methodologya

Y Max_occupancy Maximum Occupancy from Operation Archive.

Z Max_speed Maximum Speed from Operation Archive.

AA Max_volume Maximum Volume from Operation Archive.

AB Min_speed Minimum Speed from Operation Archive.

AC Min_volume Minimum Volume from Operation Archive.

(continued on next page)
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AD Sum_vht Sum of the VHT from Operation Archive.

AE Sum_vmt Sum of the VMT from Operation Archive.

AF Accident -5+20 Associated with Accident variable (Column O)—time periods back 5 minutes and ahead 
15 minutes from an accident (the variable is slightly misnamed).

AG Acc Queue Extendeda Associated with Accident variable (Column O)—time periods extended from accident 
time period according to queue extended method (see end note).

AH Inc -5+20 Associated with Max_incident_length variable (Column Q).

AI Inc Queue Extended Associated with Max_incident_length variable (Column Q).

AJ Closure -5+20 Associated with Max_closure_length variable (Column P).

AK Closure Queue Extended Associated with Max_closure_length variable (Column P).

AL Acc + Closure -5+20 Associated with the combination of Accident and Max_closure_length variables  
(Column O and P).

AM Acc + Closure Queue Extended Associated with the combination of Accident and Max_closure_length variables  
(Column O and P).

AN Acc + Inc -5+20 Associated with the combination of Accident and Max_incident_length variables  
(Column O and Q).

AO Acc + Inc Queue Extended Associated with the combination of Accident and Max_incident_length variables  
(Column O and Q).

AP Acc + Inc + AccRub -5+20 Associated with the combination of Accident, Max_incident_length and Accident  
Rubbernecking variables (Column O, Q, and R).

AQ Acc + Inc + AccRub Queue Extendeda Associated with the combination of Accident, Max_incident_length and Accident  
Rubbernecking variables (Column O, Q, and R).

AR Acc. + Inc. + Rub -5+20 Associated with the combination of Accident, Max_incident_length, Accident Rubber-
necking and Incident Rubbernecking variables (Column O, Q, R, and S).

AS Acc. + Inc. + Rub Queue Extended Associated with the combination of Accident, Max_incident_length, Accident Rubber-
necking and Incident Rubbernecking variables (Column O, Q, R, and S).

AT Space Mean Speed Average Speed derived from Travel Time and Segment Length.

AU Rounded Speed 5.0 Rounded Average Speed (Column AT) to the nearest 5.0 mph.

AV Rounded Speed 2.5 Rounded Average Speed (Column AT) to the nearest 2.5 mph.

AW Rounded Speed 2.0 Rounded Average Speed (Column AT) to the nearest 2.0 mph.

AX Regime The condition of the road segment (minimum speed observed and maximum volume 
observed) (1 = lots of capacity left, 2 = less than one lane of capacity, 3 = minimal 
capacity left, speed slowed slightly, 4 = congestion present, 5 = recovery underway).

AY Holiday Has a value of 1 on the following days: Jan 2, Feb 20, May 29, July 3, July 4, Sep 4,  
Nov 10, Nov 23, Nov 24, Dec 25, Dec 26.

AZ Rain 1 if NOAA Weather Type of Rain(RA), Mist(BR), Drizzle(DZ), T-storm(TS), or Haze(HZ) for 
the most recent time period reported (0 otherwise).

BA Heavy_Rain 2 if Rain as defined above with NOAA hourly precipitation > 0.125 inches (0 otherwise).

BB Wind 3 if NOAA Wind speed greater than 19 mph (0 otherwise).

BC Snow 4 if NOAA Weather Type of Snow(SN), Freezing(FZ), Sm Hail(GS), Hail(GR), Ice Pellet(PL) 
or Squall(SQ) for the most recent time period reported (0 otherwise).

BD Fog 5 if NOAA Weather Type of Fog(FG) OR NOAA Visibility < 0.25 (0 otherwise).

BE Wind-Speed Wind speed (in knots) directly from NOAA data for the most recent time period reported.

BF Wind-Gusts Wind speed for gusting winds (in knots) directly from NOAA data for the most recent 
time period reported.

Table D.1. Data Items Used in the Seattle Congestion-by-Source Analysis (continued)

Column Variable Name Definition

(continued on next page)
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BG Precip_hour Hourly precipitation (in inches and hundredths) from the most recent reported hourly 
NOAA data.

BH Precip_2hours Sum of last 2 hours of precipitation.

BI Precip_4hours Sum of last 4 hours of precipitation.

BJ Precip_8hours Sum of last 8 hours of precipitation.

BK Hours_since_rain Number of hours since last reported precipitation of any amount.

BL R2-R4_5 min Tells us that there was a change from Regime 2 to Regime 4 within the last 5 minutes.

BM R2-R4_10 min Tells us that there was a change from Regime 2 to Regime 4 within the last 10 minutes.

BN R2-R4_15 min Tells us that there was a change from Regime 2 to Regime 4 within the last 15 minutes.

BO R3-R4_5 min Tells us that there was a change from Regime 3 to Regime 4 within the last 5 minutes.

BP R3-R4_10 min Tells us that there was a change from Regime 3 to Regime 4 within the last 10 minutes.

BQ R3-R4_15 min Tells us that there was a change from Regime 3 to Regime 4 within the last 15 minutes.

BR Number_of_2ndary_events_Accidents Uses the Severity (duration) variable and then looks to see how many accidents and 
incidents occur within the duration (time the queue is present) of the accident in 
question.

BS Numb_Sec_Rubnking_Accidents Uses the Severity (duration) variable and then looks to see how many accident and inci-
dent rubbernecking events occur within the duration (time the queue is present) of the 
accident in question.

BT Number_of_2ndary_events_Closures Uses the Severity (duration) variable and then looks to see how many accidents and 
incidents occur within the duration (time the queue is present) of the closure in 
question.

BU Numb_Sec_Rubnking_Closures Uses the Severity (duration) variable and then looks to see how many accident and inci-
dent rubbernecking events occur within the duration (time the queue is present) of the 
closure in question.

BV Number_of_2ndary_events_Incidents Uses the Severity (duration) variable and then looks to see how many accidents and 
incidents occur within the duration (time the queue is present) of the incident in 
question.

BW Numb_Sec_Rubnking_Incidents Uses the Severity (duration) variable and then looks to see how many accident and inci-
dent rubbernecking events occur within the duration (time the queue is present) of the 
incident in question.

BX 5+5 Queue Extended Crash The queue extended variable (1 = influence is present) using the 5-minute follow on 
period as the basis for computation crashes only.

BY 5+5 Queue Extended Incident The queue extended variable (1 = influence is present) using the 5-minute follow on 
period as the basis for computation incidents only.

BZ 5+5 Queue Extended Closure The queue extended variable (1 = influence is present) using the 5-minute follow on 
period as the basis for computation closures only.

CA 5+5 Queue Extended Rubbernecking The queue extended variable (1 = influence is present) using the 5-minute follow on 
period as the basis for computation either rubbernecking variable is active.

CB 5+5 Queue Extended Incident or Accident The queue extended variable (1 = influence is present) using the 5-minute follow on 
period as the basis for computation if an incident or accident has occurred.

CC Mainline IF Variable 5+5 Sets a value 1-8 (see column X definition for what each value means) indicating what 
influences are present to cause congestion. Examines only WITHIN segment  
variables—and does NOT include construction effects.

This version of the “IF” variable is based on the 5+5 Queue Extended computations  
and the variables in columns BX through CB.

Table D.1. Data Items Used in the Seattle Congestion-by-Source Analysis (continued)

Column Variable Name Definition

(continued on next page)
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CD Construction variable 1. Construction.
2. All lanes closed.
3. 520 weekend closures.
4.  Construction happens in two locations at one time in the same segment.

CE IF 5+5 Construction Included Variable describing event effects present during that 5-minute time period. Uses the 5+5 
Queue Extended variables as input AND includes notifications of construction traffic 
management activities.
 0.  No cause of congested noted in available variables;
 1.  ONLY Inc Queue Extended is present;
 2.  ONLY Acc Queue Extended is present;
 3.  ONLY Precipitation hour is present (it has rained in the past hour);
 4.  BOTH Acc Queue Extended and Inc Queue Extended are present;
 5.  BOTH Inc Queue Extended and Precipitation hour are present;
 6.  BOTH Acc Queue Extended and Precipitation hour are present;
 7. All three variables are present;
 8.  Ramp congestion, but no cause for ramp congestion is known;
 9. Construction activity going on;
10.  Construction activity plus ramp congestion;
11.  Construction activity plus an incident queue extended;
12.  Construction activity plus an accident queue extended;
13. Construction activity plus rain;
14.  Construction activity plus an accident and incident queues extended;
15.  Construction activity plus an incident queue extended and rain;
16.  Construction activity plus an accident queue extended and rain; and
17. Construction activity plus an accident and incident queues extended and rain.

CF Delays caused by ramps/downstream 
queues (1st location)

A nonzero value is present when loop detectors at a ramp have lane occupancy greater 
than 35%. (This is used as a measure that queues have formed on the ramp and are 
likely to cause congestion on the connecting roadway.) Uses the same variable defini-
tions as in column CE. The name in the header row changes from dataset to dataset 
to describe the specific ramp and/or downstream segment. There are three columns 
allocated for these external to the road segment variables CF, CG, and CH.

CG Delays caused by ramps/downstream 
queues (2nd location)

See CF definition.

CH Delays caused by ramps/downstream 
queues (3rd location)

See CF definition.

CI IF—Single Cause (5+5) Combines the causes defined in the variables in CE, CF, CG, and CH. The effects are 
cumulative. So that a “1” on the mainline and a “2” on a connecting ramp means this 
variable would become a “4” (both accident and incident effects).

CJ Rounded Converts the Time variable to half hour increments (0 for 0:00 through 0:25, 0.5 for 0:30 
through 0:55, 1 for 1:00 through 1:25) to allow easy aggregation of results on a half 
hour basis.

CK Crash versus Volume Is a three category variable. The variable is set to 0 when no known disruption is affect-
ing roadway performance. It is set to the value “1” when a crash is affecting roadway 
performance. It is set to a “2” when some other (noncrash) is influencing roadway 
performance. (The value is “1” when a crash influences performance, even if other 
factors also influence that performance.)

CL Incident versus Volume Is similar to the Crash versus Volume variable, except that the value “1” is used to indi-
cate that an incident reported by WSDOT’s incident response team is influencing road-
way performance. A “2” indicates some disruption other than something reported by 
WITS is influencing roadway performance.

CM Queue Duration Incidents The number of 5-minute time periods during which the roadway is influenced (traffic is 
slower than the fastest travel time observed during an incident) for a defined incident. 
One value exists for each incident for which there is a valid travel time. That value is 
placed in the row that corresponds to the first occurrence of the incident.

Table D.1. Data Items Used in the Seattle Congestion-by-Source Analysis (continued)

Column Variable Name Definition

(continued on next page)
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CN Queue Duration Crashes The number of 5-minute time periods during which the roadway is influenced (traffic is 
slower than the fastest travel time observed during a crash) for a defined crash. One 
value exists for each crash for which there is a valid travel time. That value is placed in 
the row that corresponds to the first occurrence of the crash.

CO Queue Duration Closures The number of 5-minute time periods during which the roadway is influenced (traffic is 
slower than the fastest travel time observed during an incident) for a defined incident 
involving a lane closure. One value exists for each closure for which there is a valid 
travel time. That value is placed in the row that corresponds to the first occurrence of 
the closure.

CP Queue Duration Incidents and Crashes The number of 5-minute time periods during which the roadway is influenced (traffic is 
slower than the fastest travel time observed during an incident) for any defined inci-
dent or crash. One value exists for each incident or crash for which there is a valid 
travel time. That value is placed in the row that corresponds to the first occurrence of 
each incident or crash.

CQ Rubbernecking Influence Duration 5+5 The number of 5-minute time periods during which the roadway is influenced (traffic is 
slower than the fastest travel time observed during a rubbernecking event) for a 
defined rubbernecking event. One value exists for each rubbernecking event for 
which there is a valid travel time. That value is placed in the row that corresponds to 
the first incidence of the rubbernecking event.

CR When Congestion Ends a.m.b This variable places a “1” in the first row which defines a noncongested condition during 
the A.M. peak period. “Not Congested” is defined as being four consecutive rows 
where travel times are faster than 1.05 times travel at the speed limit (i.e., faster than 
57.15 mph.) For the a.m. time period, this event cannot take place prior to 7:00 a.m. It 
can occur any time AFTER 7:00 a.m. The row selected is the FIRST row in which the 
four consecutive rule is observed. Congestion due to a late occurring incident may 
cause congestion after this occurrence. This congestion is ignored by this variable.

CS Incident Effected a.m.—4:00 a.m. Start If ANY incident occurs after 4:00 a.m. on a given day, this variable is set to “1” at the 
time the first incident occurs. It remains set to “1” for the rest of the day.

CT Crash Effected a.m.—4:00 a.m. Start If ANY crash occurs after 4:00 a.m. on a given day, this variable is set to “1” at the time 
the first crash occurs. It remains set to “1” for the rest of the day.

CU Selection a.m. The section variable is set to “1” if the day is a Tuesday, Wednesday, or Thursday, AND it 
is not a designated holiday AND the “When Congestion Ends a.m.” variable is set to “1”.

CV Effected Inc versus Crash versus  
Nothing a.m.

This categorical variable is set to “0” unless: a crash has occurred (value = 1) or an inci-
dent has occurred (value = 2). When both an incident and crash have occurred, the 
value is set to “1”.

CW When Congestion Ends p.m. This variable places a “1” in the first row which defines a “noncongested” condition during 
the P.M. peak period. “Not Congested” is defined as being four consecutive rows where 
travel times are faster than 1.05 times the travel time at the speed limit (i.e., faster than 
57.15 mph.) For the P.M. time period, this event cannot take place prior to 4:00 p.m. It 
can occur any time AFTER 4:00 p.m. The row selected is the FIRST row in which the 
four consecutive rule is observed. Congestion due to a late occurring incident may 
cause congestion after this occurrence. This congestion is ignored by this variable.

CX Incident Effected p.m.—4:00 p.m. Start If ANY incident occurs after 3:00 p.m. on a given day, this variable is set to “1” at the 
time the first incident occurs. It remains set to “1” for the rest of the day.

CY Crash Effected p.m.—4:00 p.m. Start If ANY crash occurs after 3:00 p.m. on a given day, this variable is set to “1” at the time 
the first crash occurs. It remains set to “1” for the rest of the day.

CZ Selection p.m. The section variable is set to “1” if the day is a Tuesday, Wednesday, or Thursday, AND it 
is not a designated holiday AND the “When Congestion Ends p.m.” variable is set to “1”.

DA Effected Inc versus Crash versus  
Nothing p.m.

This categorical variable is set to “0” unless: a crash has occurred (value = 1) or an inci-
dent has occurred (value = 2). When both an incident and crash have occurred, the 
value is set to “1”.

a Queue Extended Influence assumes that once an incident has occurred, any travel time increase along the corridor is associated with the (potential) queue that forms as 
a result of that incident, and thus all travel in the corridor is affected by that incident until the queue has fully dissipated.
b A discussion concerning the “When Congestion Ends” variable—Considerable testing went into the selection of the time period at which congestion was described as 
ending.

Table D.1. Data Items Used in the Seattle Congestion-by-Source Analysis (continued)

Column Variable Name Definition
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the test section in the time period immediately prior to that 
incident occurring or immediately after that incident stopped 
occurring.

These time periods are indicated as 5+5 in the variable 
names in the study spreadsheet. They account for the fact that 
a trip starting at 7:00 but requiring 10 minutes to traverse a 
section, may be adversely affected by an incident which occurs 
during the 7:05 time period. Conversely, the queue caused an 
incident occurring and cleared in the 7:05 time period, might 
not grow to the point where the loop sensors used in this 
analysis notice that queue until the 7:10 time period. These 
additional 10 minutes were referenced internally as the time 
extended incident period. The queue extended incident 
period uses these measures of extended duration within 
which to find the base travel time against which continued 
queuing is measured. (See two paragraphs below for the defi-
nition of how this process works.)

The initial test of the time extension variable was 5 minutes 
prior and 15 minutes after an incident, PLUS the (minimum) 
5-minute period containing the incident. This initial set of 
analyses was called 5+20. The variables created and used in 
these initial computations are still present in the data set and 
are stored in columns AF through AS. The 15-minute exten-
sion was determined to be too lenient. That is, it was unclear 
that the delays beginning 15 minutes after the incidents had 
been cleared were related to the incident. This led to the adop-
tion of the 5+5 rule. The 5+20 variables were not used in any 
of the published analyses, but have been left in the analysis 
data set to allow future analysis should they be of interest.

The queue extended computation begins by determining 
the fastest corridor travel time experienced in the 5-minute 
period before the disruption occurs through 5 minutes after 
that disruption is reported to have ended. All subsequent travel 
periods are assumed to be influenced by that disruption until 
corridor travel times return to (are equal to or faster than) the 
fastest time observed during the “5+5” time period (5 minutes 
prior to the incident through 5 minutes after the disruption). 
By changing the definition of disruption and reapplying these 
basic rules, the influence of any combination of disruptions 
can be indicated. This approach does mean that for the ana-
lytical purposes of this project—the influence of any disrup-
tion lasts at least 15 minutes.

In off-peak conditions (where low volume exists—or in 
other words there is considerable unused roadway capacity), 
this approach is an excellent measure of incident effects. If the 
incident occurs at the beginning of peak period conditions, 
the approach is likely to associate all of the peak-period con-
gestion with the incident. This is assumed to be acceptable 
based on the concept that the incident condition combined 
with the growing peak-period traffic volume will cause con-
gestion to form earlier than would otherwise have occurred 
on that particular peak period, and the increased congestion 

will cause travel times to remain elevated later into the tail 
end of the peak period. While this is a liberal measure of the 
congestion caused by a given incident, and may overstate the 
extent of any given incident’s congestion causing influence, 
it does replicate the “lasting influence” that an incident can 
have on roadway performance. An example of how the 
Queue Extended Influence Area works and why it is used is 
as follows.

On Thursday, February 23, 2006 at 2:30 p.m., on SR 520 
westbound headed into the city of Seattle, traffic is flowing 
slightly better than normal (travel time = 494 seconds versus 
an annual mean travel time of 549 seconds for the 2:30 p.m. 
time period.) A lane closing incident, which takes 17 minutes 
to clear, occurs. During that incident, travel times through 
the corridor slow to 738 seconds. After the incident is cleared, 
congestion begins to clear out, but does not return to its pre-
incident condition, before increasing traffic volumes associ-
ated with the start of the p.m. peak period cause travel times 
to again degrade. (That is, the queue formed by the incident 
has yet to fully clear and thus P.M.-peak-period congestion 
occurs earlier than normal, because the incident caused queue 
has reduced the roadway’s capacity, making it unable to serve 
the volumes associated with the beginning of the P.M. peak 
shoulder period.) Travel times in the P.M. peak are thus slower 
than normal throughout the peak period, and do not return 
to preincident conditions until well after the P.M. peak period 
ends. (Maximum travel time on this day in the traditional 
P.M. peak is 1,787 seconds at 6:05 p.m.) Before the P.M. peak 
ends, a two-car, injury collision occurs (at 6:50 p.m.) within the 
roadway analysis segment. Travel speeds (already bad) degrade 
considerably after the accident (reaching 2,960 seconds, or an 
average speed of 8.5 mph for the 7 mph road segment), and 
don’t return to preaccident conditions (still much slower than 
the original preincident conditions) until 8:05 p.m. However, 
once again, before the queue can fully dissipate, a second 
injury accident occurs at 8:35 p.m. Travel times again climb, 
despite the lower traffic volumes experienced at 8:30 in the 
evening, peaking this time at just over 1,900 seconds. Only 
after this accident and its resulting queue is cleared, do travel 
times finally return to a point faster than that found at 2:35 p.m., 
just prior to the first incident. This occurs at 10:10 p.m. Fur-
ther contributing to congestion on this day are two other 
factors, 1) a higher travel demand than normal caused by a 
University of Washington’s men’s basketball game (the team 
was ranked 17th in the country at the time) which occurred that 
evening at the University basketball arena located at the west-
ern end of this analysis corridor (the game was a 10,000 per-
son sell out event, and started at 7:30 p.m.); and 2) the fact 
that it rained off and on that afternoon and evening. (The 
6:50 p.m. accident notes rain and wet pavement conditions, 
while the 8:35 p.m. accident notes dry pavement and overcast 
conditions.)
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The reality of this day is that a variety of events helped 
cause the congestion experienced by travelers. However, the 
instigating event appears to have been the original lane-
blocking incident. Without that event and the extended 
queues it creates, it is possible that neither rear-end accident 
would have occurred. (Although it is impossible to directly 
tie the rear-end collisions with a specific queue length.) On 
the other-hand, delays would have been considerably smaller 
without the two accidents and without the added travel 
demand caused by the basketball game. Similarly, the rain 
may very well also have contributed to the cause of conges-
tion on the corridor as well as the occurrence of both of the 
accidents, as well as to the time it took for the roadway to 
recover from all three events. Consequently, we believe that 
the queue extended influence variable works as defined— 
it indicates that a given event is likely to have influenced—but 
not totally caused—the level of congestion experienced on 
the roadway.

The queue extended approach successfully tracks the exis-
tence of that queue to that instigating event. What remains 
is to determine how to describe the relative importance of that 
event versus the contributions of the other causal factors.

When Congestion Ends

The project team was concerned that variations in speed both 
over time and over the length of the study section might give 
false indications that free flow travel had returned to the study 
section, when what was really being measured was a temporary 
improvement in conditions caused by random fluctuations in 
traffic density. Consequently, it was decided that the determi-
nation of when congestion abated must include both the facts 
that speeds were free flow throughout the study section and 
that they remained so for long enough to ensure that the obser-
vation was not just a temporary change in conditions. After 
testing the variation of travel times at the end of the peak peri-
ods on multiple study sections, it was determined that 20 min-
utes of consecutive travel times below a set value ensured that 
flow remained in a fluid state. However, while 20 minutes of 
fluid flow are required, the “end point” for congestion is indi-
cated as the first of those 20-minute periods. The selection of 
the speed at which congestion ended was set based on the 
available data. The analysis data set had three measures of 
“speed”—maximum speed in the segment, minimum speed 

in the segment, and travel time through the segment. Travel 
time was selected as the variable of choice for two reasons: 
1) on longer test sections, it more effectively replicates the 
travel conditions experienced by motorists—when compared 
to maximum and minimum speed values selected from differ-
ent locations within that segment, but within a single time 
slice; and 2) travel time effectively accounts for the importance 
of different speed measurements along the length of the seg-
ment, while minimum and maximum values can shift from 
one location to another from one time slice to another. Thus 
use of travel time moderates the importance of any one slow 
speed measurement, while the 20-minute requirement ensures 
that fluctuations in the observed travel times do not artificially 
cause the procedures to end congestion too quickly.

Tests were made using 5%, 10%, and 20% increases in travel 
times, corresponding to average segment speeds of 57, 54, and 
48 mph. Each of these travel time increases can be achieved in a 
variety of ways, ranging from modest slowing throughout the 
section, to a more substantial slowing at any one speed mea-
surement location with a section. Tests of these speeds indicated 
that on most corridors, the slower travel times were frequently 
met during the middle of the traditional peak periods. As a 
result, they were assumed to be too lenient a travel time mea-
sure. (That is, one location of moderate congestion—speeds 
below 40 mph—could occur while travel times remained fast 
enough to meet the 10% increase criteria.) Thus, it was neces-
sary to select the more stringent criteria of only a 5% increase in 
travel times. When combined with the 20-minute requirement, 
this gave results which matched local experts’ general impres-
sions in all cases except 11 corridors during the A.M. peak 
period. These corridors all experienced some level of routine 
vehicle slowing during the middle of the day, and thus fre-
quently never reached “the end of congestion” as defined by the 
5% and 20-minute rules until after the P.M. peak had ended. As 
a result, for those 11 routes, for the A.M. peak, either the 10 or 
20% rules were applied in order to ensure that congestion 
“ends” prior to noon on days when no-incident occurs. The 
lowest percentage increase which ended mean travel time prior 
to noon for days in which no incident occurred was selected for 
each of these 11 corridors. (That is, if the mean “congestion 
end” time point for nondisrupted days occurred prior to noon 
based on a 10% increase in travel time that value was used. The 
20% value was only used if the 10% value forced congestion to 
end after noon.)



229

A p p e n d i x  e 

Weather varies by time and locations for which there are no 
actual data sources. Consequently, the weather data used for 
these analyses were obtained from publicly available records 
collected from the National Oceanic and Atmospheric 
Administration (NOAA) weather station at SeaTac Interna
tional Airport. Data are reported once per hour by NOAA, 
unless weather is severe or changes dramatically, in which 
case it may be reported more frequently. The analytic data
base created for this study tracked the major statistics reported 
by NOAA, including the following:

•	 Visibility
44 Up to 10 miles;

•	 Temperature
44 Dry bulb;

•	 Wind speed
44 Average speed, and
44 Gust speed (highest gust speed that hour);

•	 Precipitation
44 Inches; and

•	 Weather type
44 Rain,
44 Mist,
44 Thunderstorm,
44 Drizzle,
44 Haze,
44 Snow,
44 Freezing,
44 Small hail,
44 Hail,
44 Ice pellets,
44 Squall, and
44 Fog.

The research team acknowledges that these data are limited 
because they are provided only once per hour and they do 
not cover microclimates over a large region. For example, it 

may be raining at SeaTac, south of Seattle, but not on the SR 
520 bridge. However, the team chose the SeaTac station as 
the most reliable and consistent of regional weather data 
sources.

In addition, the data were too detailed for the basic analy
ses intended for this study. Consequently, the team performed 
extensive analyses to determine the types of summary weather 
statistics that would effectively indicate whether weather con
ditions contributed to congestion. The outcome of those 
tests, which are summarized below, was to define bad weather 
most commonly as any period in which any measurable pre
cipitation had fallen at some time in the previous hour. 
Importantly, the use of this indicator discounted several 
weather effects, including wind, fog, snow, and rainfall inten
sity. The analysis of wind effects is given later in this appen
dix. However, because the original weather data are retained 
within the Washington State Transportation Center’s L03 
data sets, they were available for both the analyses described 
below and for future analyses, should other researchers desire 
to use them.

Attempts to Compute  
a Summary Weather Variable

The complexity of the various weather conditions led the pro
ject team to test various approaches to dealing with weather in 
the cause of congestion analyses. One of the initial efforts 
involved attempting to convert the various weather statistics 
available into a single, categorical weather variable that could be 
used as an indicator of bad weather.

Considerations When Developing  
a Composite Weather Variable

One of the initial concerns with using the SeaTac weather 
records was that those records only provide a good measure 
of weather conditions at the airport. The weather experienced 

Summary of Weather Data Tests: Seattle Analysis
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simultaneously in other areas of the Seattle metropolitan 
region can be different. For example, a storm moving north
ward that affects SeaTac at 5:00 p.m. will have occurred in 
the southernmost roadway sections before 5:00 p.m. and in 
the northern part of the city some time after 5:00 p.m. 
These temporal and spatial shifts are particularly impor
tant when trying to examine the effects of heavy, but short
duration, rainfall events. Conventional regional weather 
station data simply do not provide the temporal and geo
graphic resolution required to observe these effects, but 
because regional weather station data are routinely avail
able around the country, using these data means the SHRP 2  
analysis can be more readily replicated in other parts of the 
country.

Another aspect of the differences between sitespecific 
weather events and those recorded at a weather station is that 
the example storm above may have dropped exactly 0.25 inches 
of rain at the airport, but it may have deposited only 0.1 inch 
south of the airport, and 0.5 inches in areas north of the 
airport. Therefore, although the rain data are a reasonable 
estimate of weather conditions, they cannot be used as a pre
cise, highly accurate measure of the actual weather occurring 
on any given segment of roadway during a specific 5minute 
interval.

In addition to the basic time and geographic problems 
noted above, the snow and rainfall intensity variables pre
sented a second problem in that many of the effects of precipi
tation occur after the precipitation has fallen. This is especially 
true for snowfall, as the effects of the snow falling are not 
nearly as significant as the effects from snow accumulations 
on the ground, depending on the amount remaining on the 
roadway. Snow flurries have little effect on driving, but 4 inches 
of snow on the ground 2 hours after the snow has stopped 
falling has a major impact on roadway performance.

Another issue associated with snowfall in the Seattle area 
was caused by a combination of how rarely snow falls in the 
region and how travel times are computed. When snow falls 
(and sticks), Seattleites tend to avoid driving whenever pos
sible. The region does not routinely use salt to deice road
ways. As a result, most cities do not clear snow as effectively 
as those in regions of the country that routinely experience 
snowfall, and snow is frequently turned into sheet ice on the 
roadways by cars that do travel, making the area’s hilly terrain 
dangerous. The result is that a large percentage of travelers 
simply avoid going out. Therefore, after snow falls, volume 
and lane occupancy are frequently low on the freeways, despite 
the relatively slow speed of those cars that are present. How
ever, the loop detector system only sees low volumes and low 
occupancy values and may thus overestimate the speeds at 
which the vehicles are moving. Finally, for this study, the 
number of days on which snow fell or heavy thundershowers 
occurred during the analysis year was small.

Tests of a Single Composite Weather Variable

The initial attempt to compute this variable tried to create a 
fourcategory variable with the following definitions:

•	 1 = good;
•	 2 = mediocre (minor weather conditions exist);
•	 3 = bad (moderate weather conditions exist); and
•	 4 = very bad.

The detailed definitions of these conditions were as follows:

•	 1 = everything else (dry, clear);
•	 2 = at least one of these weather elements is present: rain, 

mist, thunderstorm, drizzle, or haze. This definition was 
meant to represent a situation in which the pavement is wet 
or may still be wet, meaning that spray may be an issue;

•	 3 = at least one of these weather elements is present: wind 
speed >20 mph or precipitation >0.125 in.; and

•	 4 = at least one of these weather elements is present: 
snow, freezing, small hail, hail, ice pellets, squall, visibility 
<0.25 mile, or minor weather conditions with a temper
ature <33°F.

For the initial test, the weather value was reset to one at mid
night of each day, and remained at that value until weather 
conditions occurred that set the weather statistic to a higher 
value (i.e., weather became worse than previously indicated). 
The weather value would then be set to that higher number, 
and would remain there until weather conditions worsened, 
or the end of the day was reached.

One major limitation with this approach was that it did not 
allow conditions to improve as the day progressed. For example, 
it is well known that wet roadways dry off as the day progresses 
if additional rain does not fall. Consequently, a second iteration 
in the testing of a categorical weather variable attempted to 
gradually reset the weather variable. A literature search identi
fied various drying factors for roadways, but they required far 
more detailed geometric and temperature information than 
that which was available to the project team. A variety of time
based drying adjustments were tested. The final version of this 
categorical variable based the value of that variable on the worst 
condition measured during the previous 2 hours. The project 
team also tested 1, 4, 6, and 8hour periods.

In the end, this approach was abandoned. The primary 
issue was that a 4 rating frequently did not produce travel 
conditions that were worse than those produced by a 3 rating 
because a snowy hour as defined by NOAA did not affect 
travel time as much as a windy or heavy rain hour did. Simi
larly, a windy or heavy rain hour was often not worse than a 
rainy hour. For example, the mean travel time for p.m. peak 
travel times on the SR 520 Seattle westbound analysis  
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segment when the past 2 hours was set to 4 (severe = snowy) 
was 612 seconds, but the mean travel time for the same time 
period was 676 seconds when the variable was set to 3. Simi
larly, on the SR 520 Redmond westbound test segment, the 
mean travel time for Condition 4 (snowy) was 350 seconds, 
but the mean travel time for Condition 3 was 408 seconds, 
and Condition 2 was 416 seconds.

Further tests showed that determining which variables had 
the most impact on roadway performance and should be used 
to determine the various degrees of bad weather in a categori
cal weather variable was a task beyond the ability of the research 
team, within the greater context of analyzing the causes of con
gestion. It was consequently decided to concentrate on the 
major types of weather conditions independently.

The main weather variables carried forward to the next set 
of analyses were

•	 Rain = 1 if NOAA weather type of rain (RA), mist (BR), 
drizzle (DZ), thunderstorm (TS), or haze (HZ) was reported 
for the most recent time period (0 otherwise);

•	 Heavy_Rain = 2 if rain as defined above with NOAA hourly 
precipitation was >0.125 inches (0 otherwise);

•	 Wind = 3 if NOAA wind speed greater than 19 mph (0 
otherwise);

•	 Snow = 4 if NOAA weather type of snow (SN), freezing (FZ), 
small hail (GS), hail (GR), ice pellet (PL) or squall (SQ) was 
reported for the most recent time period (0 otherwise);

•	 Fog = 5 if NOAA weather type of fog (FG) or NOAA visi
bility <0.25 mile (0 otherwise);

•	 Wind Speed = Wind speed (in knots) directly from NOAA 
data for the most recent time period reported;

•	 Wind Gusts = Wind speed for gusting winds (in knots) 
directly from NOAA data for the most recent time period 
reported;

•	 Precip_hour = Hourly precipitation (in inches and hun
dredths) from the most recent reported hourly NOAA 
data;

•	 Precip_2hours = Sum of past 2 hours of precipitation;
•	 Precip_4hours = Sum of past 4 hours of precipitation;
•	 Precip_8hours = Sum of past 8 hours of precipitation; and
•	 Hours_since_rain = Number of hours since last reported 

precipitation of any amount.

All of these variables are available in the final analysis data sets.

Analysis of Different Rain Variables

Because of the frequent rain in Seattle, the team hypothesized 
that rain was likely a significant contributing source of con
gestion in the region. Consequently, considerable effort was 
placed on examining the effects of rain and determining which 
measure of rain worked most effectively.

One of the most illustrative analyses examined the effects 
of rain on the formation of congestion as measured using 
different definitions of rain. The analysis computed the 
probability that a given test section of roadway was operat
ing in each regime for each time slice of a day. (See Appendi
ces C and D and the Chapter 5 section “Computed Variables 
Used for Tracking the Influence of Disruptions on Travel 
Times and Delays” for a definition of the regime variable.) 
These probabilities were computed for days when rain 
occurred within the past hour and were then compared with 
probabilities on days when the same roadway was dry at that 
same time of day. The mean, median, 80th percentile, and 
95th percentile travel times and speeds for each corridor and 
time period also could be computed for wet and dry condi
tions. The following analysis uses the SR 520 roadway sec
tions as the illustrative example of these findings; summary 
results are included.

As Tables E.1 and E.2 show, the percentage of travel time 
that occurs in Regimes 1 and 2 is not affected by rain. In cor
ridors and times when the population would be traveling in 
ideal conditions (60 mph and Regime 1 or 2), rain does not 
appear to affect the speed of travel at all. For example, on SR 
520 Seattle westbound between 5:00 and 6:00 a.m., with no 
rain the percentage of travel time in combined Regimes 1 and 
2 is almost 100% regardless of the weather condition. This 
effect is seen across all four corridors of SR 520 for both 
Regimes 1 and 2.

However, when conditions approach roadway capacity, 
the effects of rain become apparent. Rain causes a signifi
cant decrease in the percentage of time a roadway spends in 
Regime 3 (nearcapacity volumes with freeflowing speeds) and 
a commensurate increase in Regime 4 (congested) travel. For 
example, if no rain falls between 7:00 and 8:00 a.m., then 21% 
of the time westbound SR 520 operates in Regime 3; however, 
if it has rained in the past hour, only 5% of the time. Similarly, 
if there is no bad weather between 4:00 and 5:00 p.m. on Seat
tle SR 520 eastbound, the probability of traveling in Regime 3 
is 30.49%, and Regime 4 is 62.73%. Once it begins raining, 
the probability of traveling in Regime 4 jumps to 80.53%, and 
Regime 3 moves to around 13.94%.

Because speeds vary slightly in Regime 3 (they can range 
between 42 and 58 mph), a drop in average speed is seen 
within this regime. Figure E.1, shows how mean speed is at its 
slowest in this regime when rain has fallen recently. Figure E.1 
also shows how this change in speed is partly dependent on 
how long it has been since it rained. The variable used in this 
figure is an inclusive variable that is set to rain if any rain has 
fallen in the past 1, 2, 4, or 8 hours. As the time period during 
which rain has fallen is increased (i.e., moves further away 
from when it might have last rained), it can be seen that the 
speeds gradually increase and return to what they were before 
the rain began. This same time effect, which is illustrated in 
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Table E.1. Percentage of Travel Time Occurring in Specific Regimes Given  
Different Weather Conditions (A.M. Peak)

SR 520 Seattle WB 5:00 to 6:00 a.m. SR 520 Seattle WB 7:00 to 8:00 a.m.

No Bad Weather Precip 1 Hour Precip 2 Hour No Bad Weather Precip 1 Hour Precip 2 Hour

N 2,656.000 409.00 528.000 N 2,724.00 339.00 477.00

Regime 1 63.10% 61.12% 62.69% Regime 1 0.29% 0.00% 0.00%

Regime 2 36.71% 37.90% 36.55% Regime 2 1.06% 0.00% 0.00%

Regime 3 0.00% 0.00% 0.00% Regime 3 20.96% 4.72% 7.34%

Regime 4 0.15% 0.98% 0.76% Regime 4 73.64% 93.81% 91.61%

Regime 5 0.04% 0.00% 0.00% Regime 5 4.04% 1.47% 1.05%

SR 520 Seattle EB 5:00 to 6:00 a.m. SR 520 Seattle EB 7:00 to 8:00 a.m.

No Bad Weather Precip 1 Hour Precip 2 Hour No Bad Weather Precip 1 Hour Precip 2 Hour

N 2,536.00 409.00 528.000 N 2,556.00 318.00 459.00

Regime 1 77.21% 82.40% 81.82% Regime 1 0.04% 0.00% 0.00%

Regime 2 22.67% 17.60% 18.18% Regime 2 0.82% 0.00% 0.00%

Regime 3 0.00% 0.00% 0.00% Regime 3 8.49% 1.89% 3.49%

Regime 4 0.08% 0.00% 0.00% Regime 4 89.63% 98.11% 96.51%

Regime 5 0.04% 0.00% 0.00% Regime 5 1.02% 0.00% 0.00%

SR 520 Redmond WB 5:00 to 6:00 a.m. SR 520 Redmond WB 7:00 to 8:00 a.m.

No Bad Weather Precip 1 Hour Precip 2 Hour No Bad Weather Precip 1 Hour Precip 2 Hour

N 2,643.00 409.00 538.000 N 2,711.00 339.00 487.00

Regime 1 68.63% 67.48% 68.96% Regime 1 0.44% 0.00% 0.00%

Regime 2 31.37% 32.52% 31.04% Regime 2 2.73% 0.59% 0.62%

Regime 3 0.00% 0.00% 0.00% Regime 3 92.48% 72.27% 78.64%

Regime 4 0.00% 0.00% 0.00% Regime 4 4.02% 27.14% 20.74%

Regime 5 0.00% 0.00% 0.00% Regime 5 0.33% 0.00% 0.00%

SR 520 Redmond EB 5:00 to 6:00 a.m. SR 520 Redmond EB 7:00 to 8:00 a.m.

No Bad Weather Precip 1 Hour Precip 2 Hour No Bad Weather Precip 1 Hour Precip 2 Hour

N 2,643.00 409.00 528.000 N 2,643.00 409.00 528.00

Regime 1 51.46% 52.32% 52.27% Regime 1 60.00% 60.00% 60.00%

Regime 2 48.35% 46.45% 46.78% Regime 2 60.00% 60.00% 60.00%

Regime 3 0.00% 0.00% 0.00% Regime 3 0.00% 0.00% 0.00%

Regime 4 0.00% 0.00% 0.00% Regime 4 0.00% 0.00% 0.00%

Regime 5 0.19% 1.22% 0.95% Regime 5 53.00% 49.00% 49.00%

Note: N = number of 5-minute periods included in each 1-hour period for each analysis; WB = westbound; EB = eastbound. Precip 1 Hour and Precip 2 Hour = 
sum of past 1 and 2 hours of precipitation, respectively.
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Table E.2. Percentage of Travel Time Occurring in Specific Regimes Given  
Different Weather Conditions (P.M. Peak)

SR 520 Seattle WB 4:00 to 5:00 p.m. SR 520 Seattle WB 7:00 to 8:00 p.m.

No Bad Weather Precip 1 Hour Precip 2 Hour No Bad Weather Precip 1 Hour Precip 2 Hour

N 2,675.000 429.00 514.000 N 2,636.00 393.00 521.00

Regime 1 0.00% 0.00% 0.00% Regime 1 0.95% 0.00% 1.54%

Regime 2 0.11% 0.00% 0.00% Regime 2 21.85% 13.49% 13.82%

Regime 3 1.79% 0.70% 0.58% Regime 3 7.66% 1.53% 3.65%

Regime 4 97.72% 99.07% 99.22% Regime 4 58.19% 73.79% 66.22%

Regime 5 0.37% 0.23% 0.19% Regime 5 11.34% 11.20% 14.78%

SR 520 Seattle EB 4:00 to 5:00 p.m. SR 520 Seattle EB 7:00 to 8:00 p.m.

No Bad Weather Precip 1 Hour Precip 2 Hour No Bad Weather Precip 1 Hour Precip 2 Hour

N 2,624.00 416.00 502.000 N 2,599.00 381.00 517.00

Regime 1 0.00% 0.00% 0.00% Regime 1 1.23% 4.20% 4.45%

Regime 2 0.50% 0.00% 0.00% Regime 2 76.49% 70.87% 69.63%

Regime 3 30.49% 13.94% 14.34% Regime 3 1.19% 0.00% 0.19%

Regime 4 62.73% 80.53% 80.82% Regime 4 9.08% 12.07% 0.00%

Regime 5 6.29% 5.53% 5.38% Regime 5 12.00% 12.86% 0.58%

SR 520 Redmond WB 4:00 to 5:00 p.m. SR 520 Redmond WB 7:00 to 8:00 p.m.

No Bad Weather Precip 1 Hour Precip 2 Hour No Bad Weather Precip 1 Hour Precip 2 Hour

N 2,690.00 429.00 525.000 N 2,645.00 393.00 537.00

Regime 1 0.19% 0.23% 0.19% Regime 1 2.38% 3.31% 4.42%

Regime 2 61.12% 31.70% 35.81% Regime 2 89.91% 84.48% 85.29%

Regime 3 6.88% 1.63% 2.10% Regime 3 0.08% 0.00% 0.00%

Regime 4 31.60% 66.20% 61.71% Regime 4 7.60% 11.45% 11.73%

Regime 5 0.22% 0.23% 0.19% Regime 5 0.04% 0.76% 0.56%

SR 520 Redmond EB 4:00 to 5:00 p.m. SR 520 Redmond EB 7:00 to 8:00 p.m.

No Bad Weather Precip 1 Hour Precip 2 Hour No Bad Weather Precip 1 Hour Precip 2 Hour

N 2,689.00 428.00 513.000 N 2,642.00 393.00 521.00

Regime 1 0.04% 0.00% 0.00% Regime 1 1.51% 1.02% 0.19%

Regime 2 2.31% 1.40% 1.17% Regime 2 78.73% 68.96% 73.13%

Regime 3 2.86% 1.64% 2.34% Regime 3 0.00% 0.00% 0.00%

Regime 4 90.03% 90.65% 91.91% Regime 4 14.72% 22.14% 18.81%

Regime 5 4.76% 6.31% 4.68% Regime 5 5.03% 7.89% 7.87%

Note: N = number of 5-minute periods included in each 1-hour period for each analysis; WB = westbound; EB = eastbound. Precip 1 Hour and Precip 2 Hour = 
sum of past 1 and 2 hours of precipitation, respectively.
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Figure E.2, can be seen in the percentage shift from Regime 3 
travel to Regime 4 travel.

Regime 4 sees a much sharper change in speed than 
Regime 3. In a normal Regime 4 condition, without rainfall, 
SR 520 Redmond eastbound between 4:00 and 5:00 p.m. has 
a mean speed of 38.82 mph. When precipitation has fallen in 
the past hour, however, the mean speed for Regime 4 drops 
to 35.60 mph.

One limitation with the above analyses is best explained 
with an example. Rain falls between 3:00 and 4:00 p.m. The 
time periods between 3:00 and 5:00 p.m. are assumed to be 
rain affected (within 1 hour of when measurable rain has 
fallen). Travel times occurring at 4:55 p.m. that day are rain 
affected, but travel times at 5:05 p.m. are considered dry trips. 
The limitation with this analysis is that the rain may have cre
ated a queue that affects the 5:05 dry trip. This possibility was 

Figure E.1. Percentage of time spent in Regimes 3 and 4 (eastbound on 
SR 520, Seattle section).

Figure E.2. Percentage of time spent in Regimes 3 and 4 (eastbound on 
SR 520, Seattle section).
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ignored in the analysis results (discussed below), thus slightly 
underestimating the potential impacts of rain on travel time.

Analysis of Rain effects  
on Accident Rates on SR 520

Comparing Accident Rates Under Rain  
and No-Rain Conditions

Although the above analysis shows that rain helps cause con
gestion under the correct volume conditions, the research 
team was also interested in whether rain increases the likeli
hood of crashes. A statistically rigorous analysis of this ques
tion was undertaken using the data for all four SR 520 test 
segments. The results of that analysis are as follows.

For the year 2006 there were 105,120 (365 × 24 × 12) con
secutive 5minute measurement intervals with a wide variety 
of recorded or deduced variables, including indicators for the 
presence of rain and the occurrence of accidents during each 
interval. Such data were available for four freeway segments 
of the Seattle–Redmond SR 520 corridor, designated here as 
Sea520WB, Sea520EB, Red520WB, and Red520EB.

For the following analysis the intervals were divided into 
those with rain (15,703) and those without rain (89,417). 
These counts were the same for all four segments, since the 
weather indicator came from a single location (SeaTac Inter
national Airport). Given the distance between SeaTac and the 
520 corridor, the rain indicator may sometimes be in error 
(see discussion above concerning the team’s decision to use 
NOAA weather observations from SeaTac); nevertheless, it 
was used to determine differences in accident occurrence 
rates during intervals with rain and intervals without rain. 
These measurement intervals were also classified by their 
accident indicator, which should be accurate for each of the 
four segments. The resulting crossclassifications are shown 
in Tables E.3 through E.6.

Since accidents are rare events, it is reasonable to treat their 
occurrence from time interval to time interval as indepen
dent events, with probability p1 when there is no rain and 
probability p2 when there is rain. The number X1 of acci
dents observed over the n1 = 89,417 norain intervals can be 

treated as having a binomial distribution with parameters n1 
and p1. This distribution is well approximated by a Poisson 
distribution with mean l1 = n1p1. This distributional relation  
is expressed as X1 < Pois(l1 = n1p1). Similarly, X2 < Pois(l2 
= n2p2), where X2 is the accident count over the n2 = 15,703 
intervals with rain.

Estimates of p1 and p2 are easily obtained as i = Xi/ni for 
i =1, 2, respectively, with a resulting estimate of 1/2 for p1/p2. 
100g% confidence intervals for p1/p2 are obtained by the 
exact method (Clopper–Pearson):

xL qbeta gam X X n nl= +( ) +[ ]−( ) <1 1 2 2 1 1 1 2, ,

where xL is the lower limit; and

xU qbeta gam X X n nl= −( ) +[ ]−( ) <1 1 2 2 1 1 1 2, ,

where xU is the upper limit, gam = g = 0.95, X1 = X1, X2 = X2, 
n1 = n1, n2 = n2, and qbeta denotes the beta distribution 
quantile function that is intrinsic to R.

Table E.3. Accident–Rain  
Cross-Classification for Sea520WB

Accident

Rain

TotalNo Yes

No 89,239 15,644 104,883

Yes 178 59 237

Total 89,417 15,703 105,120

Table E.4. Accident–Rain  
Cross-Classification for Sea520EB

Accident

Rain

TotalNo Yes

No 89,196 15,633 104,829

Yes 221 70 291

Total 89,417 15,703 105,120

Table E.5. Accident–Rain  
Cross-Classification for Red520WB

Accident

Rain

TotalNo Yes

No 89,358 15,686 105,044

Yes 59 17 76

Total 89,417 15,703 105,120

Table E.6. Accident–Rain  
Cross-Classification for Red520EB

Accident

Rain

TotalNo Yes

No 89,365 15,687 105,052

Yes 52 16 68

Total 89,417 15,703 105,120
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The resulting estimates and 95% confidence bounds for p1/
p2 are shown in Table E.7 and graphically illustrated in Fig
ure E.3. The estimates for p1/p2 are consistently around 0.53 to 
0.61. The confidence intervals for the Sea520WB and Sea520EB 
segments do not contain the value 1, and the hypothesis p1 = p2 
can be rejected in those situations at significance level a = 0.05. 
For segments Red520WB and Red520EB these intervals do con
tain 1, and the same hypothesis cannot be rejected at that sig
nificance level. However, this weaker form of evidence in those 
two cases probably results from there being fewer accidents on 
those segments. The combined analysis rejects the hypothesis 
p1 = p2 quite strongly. Based on that analysis, it can be stated 
with 95% confidence that the true ratio p1/p2 is in the interval 
[0.462, 0.664]. This interval is the tightest of all intervals because 
of the combined number of involved accidents. This result indi
cates that the accident rate during rain is almost twice as high as 

during periods without rain. In both the table and figure, an 
aggregated analysis was performed for all four segments com
bined; analysis results for that case are labeled “520 Corridor.”

Figures E.4 through E.7 show the derived travel times for 
each workday, averaged over each respective commute period, 
in relation to the highest accident severity recorded for that 
commute period. Accident severity = 0 means that there was 
no accident, 1 indicates a minor accident, and 2 indicates a 
major accident. The results are shown as box plots for morn
ing and afternoon commute periods.

Some of the box plots in these figures suggest that accident 
severity may not affect the average travel time over the com
mute period very much; see, for example, the box plot for 
Sea520WB during the afternoon commute. To examine this 
issue the team performed the Anderson–Darling ksample 
test, which tests whether k independent samples could arise 
from sampling the same population. Here the k = 3 popula
tions concern average commute travel times when no acci
dent occurs, when the most severe accident during that period 
has a severity level of either 1 or 2.

The Anderson–Darling ksample test can be performed in 
R by installing the package adk (this needs to be done just 
once for each installation of R), then executing library (adk) 
for each new R session during which adk.test is needed, and 
then executing the command:

adk.test x x x1 2 3, ,( )

where x1, x2, and x3 are the k = 3 samples to be compared.

Table E.7. Estimates and 95% Confidence 
Intervals for p1/p2

Segment Estimate Lower Bound Upper Bound

Sea520WB 0.530 0.393 0.724

Sea520EB 0.554 0.422 0.736

Red520WB 0.609 0.350 1.115

Red520EB 0.571 0.321 1.071

520 Corridor 0.553 0.462 0.664

Figure E.3. Estimates and 95% confidence intervals for p1/p2.
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Figure E.4. Sea520WB travel times in relation to accident severity  
or no accident.

Figure E.5. Sea520EB travel times in relation to accident severity  
or no accident.
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The pvalues for all eight comparisons (four segments, two 
commute periods each) are given in Table E.8. As suspected, 
there seems to be no significant difference in average travel 
time under the three accident scenarios during the afternoon 
commute for Sea520WB. There also seems to be no significant 
difference for the morning commute of Red520EB. However, 
that lack of significance is easily explained by the small num
ber of accidents, three of Severity 1 and none of Severity 2.

Accidents After Significant Dry Periods

Another rain analysis explored the link between long dry 
periods and the accident rates during subsequent periods of 
rain. The idea was to determine where long periods of dry 
weather allow sufficient oil to soak into pavements, so that oil 
comes to the surface when it rains, making roadways unusu
ally slick and increasing accident rates.

Figure E.6. Red520WB travel times in relation to accident severity  
or no accident.

Figure E.7. Red520EB travel times in relation to accident severity  
or no accident.
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The analysis examined whether accident rates are higher 
during the 6 hours after rainfall after it has been dry for  
504 hours (3 weeks) or 336 hours (2 weeks).

Summary

There were five occurrences in 2006 when it was dry for 
>336 hours and then rained 0.01 inch or more and two 
occurrences in 2006 when it was dry for >504 hours and then 
rained 0.01 inch or more. They are as follows:

•	 Wednesday, August 9, 7:55–13:50: 639 hours rain free, 
then rain;

•	 Saturday, September 9, 1:50–7:45: 633 hours rain free, 
then rain;

•	 Tuesday, July 4, 4:55–10:50: 424 hours rain free, then rain;
•	 Tuesday and Wednesday, August 29–30, 18:15–00:40: 490 

hours rain free, then rain; and
•	 Friday, October 6, 5:50–16:45: 349 hours rain free, then 

two independent rains.

Accident numbers were aggregated and nonparametric inde
pendent sample tests were run to compare accidents during 
these days and times with the numbers of accidents during 
these cases. A basic accident per hour number was developed to 
determine if the accident rate during these cases was higher 
than the yearly average. For example, all Wednesdays from 
7:55 to 13:50 were compared with the August 9 case. This 
analysis was limited because it used 0 and 1, which excluded 
multiple accidents; thus, the findings were not relevant.

To deal with the multiaccident problem, a basic crosstabs 
analysis was done to account for times with multiple accidents. 
This technique allowed a basic probability of an accident at 
the given times to be determined overall compared with the 

probability of an accident when it rained after an extended dry 
period. The results of the crosstabs analysis suggested that 
accident rates were not significantly higher when it was dry 
and then rained compared with accident rates at similar times.

The probability of accidents during all days and all hours 
compared with the +336 hours of dry weather followed by 
rain cases was

•	 Probability of an accident anywhere: 0.082235; and
•	 Probability of an accident during the dry, then wet cases: 

0.121429.

The probability of accidents during all days in the p.m. peak 
period (2:00 to 7:30 p.m.) only compared with the +336 hours 
of dry weather followed by rain cases was

•	 Probability of an accident anywhere: 0.1502; and
•	 Probability of an accident during the dry, then wet cases: 

0.095238.

The probability of accidents during the weekday p.m. peak 
period compared with the +336 hours of dry weather followed 
by rain cases was

•	 Probability of an accident anywhere: 0.170639; and
•	 Probability of an accident during the dry, then wet cases: 

0.095238.

The probability of accidents during all days and all hours 
compared with the +504 hours of dry weather followed by 
rain cases was

•	 Probability of an accident anywhere: 0.082235; and
•	 Probability of an accident during the dry, then wet cases: 

0.090278.

Results and Recommended Further Analysis

The results above show that the probability of accidents dur
ing the 6 hours after rainfall subsequent to 336 hours or more 
of dry weather was slightly higher than the probability of acci
dents any day or time on major roadways in greater Seattle. 
However, the probability of accidents during these times was 
lower than the probability of accidents anywhere when look
ing only at p.m. peak times and p.m. peak weekdays. Without 
a clear result that states that accident rates are significantly 
higher during these times, the claim cannot be made that there 
is a higher likelihood of getting into accidents when it has been 
dry for a significant period of time and then rains.

Other analyses may include

•	 Adjusting the threshold for rain to include, for example, 
>0.02 inch instead of >0.01 inch;

Table E.8. p-Values for 
Anderson–Darling k-sample 
Test When Comparing Travel 
Times with No Accident  
with Accident Severity 1  
and with Accident Severity 2 
(1; 2, pp. 918–924)

Commute

Morning Afternoon

Segment p-Value

Sea520WB 4e-05 0.17753

Sea520EB 0.00053 0.00242

Red520WB 0.00959 0

Red520EB 0.56444 0.00555
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•	 Adjusting the 6 hours of rain threshold to capture 8 or  
10 hours after the rain begins to see if there are more 
accidents; and

•	 Developing a statistical test to determine whether the 
above findings are statistically relevant.

Analysis of Snowfall effects

An analysis comparing roadway performance when snow was 
falling versus when snow was not falling and when no pre
cipitation was falling resulted in counterintuitive findings 
that snow was not a significant contributing factor to road
way performance. Because this result was counterintuitive, a 
series of case studies was undertaken to examine traffic per
formance on those days that snow fell in the city.

The case study of delays on I90 when snow fell illustrates 
the difficulties in determining the effects of weather on road
way performance. It also indicates why the selection of the vari
able snow falling in the initial analysis of the effects of snow on 
travel time produced poor results. In the case study, the largest 
roadway performance effects caused by snowfall did not occur 
while the snow was falling at the SeaTac weather station. 
Instead, they occurred as a result of the accumulation of snow 
on the roadway and the conversion of that snow into sheet ice 
on some roadway sections. The latter event occurred well after 
the snow had stopped falling at the weather station.

In addition, the analysis of that case study revealed that 
delays did not happen similarly on all roadway sections that 
evening (although the newspaper reported long delays on 
several corridors). In fact, the eastbound and westbound sec
tions of I90 (presumed to experience the same level of snow
fall) experienced very different roadway performance (delay) 
conditions during and after the snow storm. While the west
bound direction showed modest delays in the evening, with 
moderate delays occurring between 6:00 and 9:00 p.m., the 
eastbound section experienced an unusually heavy day of 
congestion before the snowfall, and then a major additional 
pulse of congestion starting at 8:00 p.m. that lasted well into 
the morning hours. Exacerbating the eastbound congestion 
was the traffic volume added because of a professional foot
ball game that occurred that night in downtown Seattle. The 
Seahawks played the Packers on Monday Night football, add
ing 65,000 fans, divided across multiple freeways, to the out
bound traffic beginning at about 8:30 p.m.

The snowfall case study revealed many of the analytic prob
lems associated with an analysis of the effects of bad weather. 
The most significant problem was finding a good definition, 
in analytic terms, of bad weather. The key regionwide weather 
variable used to indicate bad weather, the presence of mea
surable rainfall during the previous hour, was a poor choice 
for analyzing the effects of snowfall.

The proper variable for analysis of the effects of snow  
on tra vel time performance would have been snowfall accu

mulation on the roadway, but unfortunately the data neces
sary to estimate or compute this variable were not available 
for this project.

Analysis of Wind effects

An analysis of the effects of wind on roadway performance 
indicated that on the two roadways (I90 and SR 520) that 
cross Lake Washington on floating bridges, high winds (wind 
gusts above 19 mph) had an observable effect in moderate 
volume conditions. This effect was especially noticeable east
bound when the winds, generally from the south, caused waves 
to crash against the bridge, creating significant spray. How
ever, wind appeared to have inconsistent effects on all other 
freeway corridors in the region. Some roadway sections were 
adversely affected by strong winds, while the performances of 
other segments were not.

The effects of wind on roadway performance were ana
lyzed differently from the effects of rain. This is partly because 
other than the prolonged effect of any queues being formed, 
wind does not have a lasting effect similar to that of rain. 
Once wind stops, its direct effects stop. That is, wind does not 
have a lasting effect equivalent to spray from wet roadways 
caused by rain. The lack of this effect limited the project 
team’s confidence in the use of the available NOAA wind data 
for specific roadway sections.

As a consequence, the team did not use the wind gust 
variable produced by NOAA because there was little confi
dence that this variable was effectively applicable to geo
graphically removed locations. Similarly, the wind speed 
variable that was used was assumed to be only a reasonable 
surrogate for windy conditions, rather than a definitive sta
tistic indicating the precise wind speed at which travel might 
be affected.

To test the effects of wind on travel times, the data set was 
divided into windaffected and notwindaffected groups on 
the basis of the wind speed variable present in each 5minute 
time slice. The travel times for these two groups were compared 
within specific time intervals with both traditional ttests, which 
assumed normally distributed travel times within those time 
periods, and nonparametric tests of the sample means. Tests 
were performed only for nonholiday Tuesdays, Wednesdays, 
and Thursdays (combined).

Sensitivity tests were performed with different values of the 
wind speed variable to determine the sensitivity of the analysis 
results to the breakpoint selected for identifying windy versus 
notwindy conditions. Figures E.8 through E.11 illustrate how 
travel times by direction across the two floating bridges were 
affected by various wind speeds. The graphs show mean travel 
times by time of day by wind speed for nonholiday Tuesdays 
through Thursdays.
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The analytic tests performed on the Seattle test corridors 
showed that travel times in all test corridors were not equally 
affected by wind. In fact, in many corridors, wind did not have 
any statistically significant effect on travel times. In other 
corridors, wind had a high impact on roadway performance. 
The authors believe that this is due in part to differences 
between actual wind speeds within the study corridor and those 

measured at the airport, and in part to the way that sitespecific 
roadway geometry affects how drivers respond to wind. That 
is, travel times over the SR 520 floating bridge, which has nar
row lanes, no shoulders, and physically moves when struck by 
windblown waves, are affected at much lower wind speeds 
than travel times on I5 in the northern reaches of the metro
politan region, where lanes are wider, fullwidth shoulders 

Figure E.8. SR 520 Seattle eastbound.

Figure E.9. SR 520 Seattle westbound.
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exist, and wind does not cause the roadway to move. Table E.9 
gives examples of how wind affects various corridors dif
ferently, even though the corridors are directly connected. 
Table E.9 also gives examples of the results of the sensitivity 
tests performed with different wind speeds to separate windy 
from notwindy conditions.

As Table E.9 shows, the SR 520 bridge is affected by rela
tively moderate winds (10 mph sustained wind speeds), mainly 
because the bridge is a 2milelong floating span. The roadway 

is two lanes in each direction with no shoulders. In even 
moderate wind, a driver crossing the bridge can feel the 
bridge sway. The wind also can create some spray, as wind
driven waves break against the bridge, causing drivers to 
slow down. Because the bridge operates near capacity 12 to 
14 hours each weekday, these wind effects are sufficient to cause 
congestion.

The I90 bridge, located nearby to the south, also is affected 
by wind, but to a lesser degree than the SR 520 bridge. This 

Figure E.10. I-90 Bridge eastbound.

Figure E.11. I-90 Bridge westbound.
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is most likely due to a combination of factors: the I90 bridge 
is more modern, has full shoulders, and sits higher off the 
water (and therefore experiences less winddriven spray). 
Interestingly, the evening commute across the I90 bridge is 
affected by wind, but the morning commute is not, even 
though traffic volumes are similar in both periods. This dif
ference is partly because the test section that included the I90 
bridge also included a large segment of nonbridge travel 
across Mercer Island. Backups on the bridge affecting east
bound traffic actually create some freeflow conditions on the 
island itself, decreasing the travel time impact of the wind. 
However, windcaused backups significantly affect the 
upstream section of eastbound I90 (the Seattle section also 
shown in Table E.9). This explains why the I90 Seattle sec
tion is statistically affected by wind in the morning, even 
though it does not include the bridge itself. At more moderate 
wind speeds (e.g., 10 mph sustained winds), none of the I90 
segments showed a statistically significant change in expected 
travel time.

The I5 segments included in Table E.9 indicate that wind 
affects some corridors in some peak periods, but not all cor
ridors or all peak periods within all corridors. In general, 
high peak period volumes relative to their capacity make 
roadway segments more likely to be affected by high winds.

Other reasons that a roadway may be susceptible to winds 
are that the road segment is exposed to high levels of wind 

(e.g., the I5 North Seattle segment crosses the Ship Canal 
Bridge, an exposed portion of road where wind is often felt) 
or that the segment is immediately upstream of another seg
ment that is wind affected. For example, the I5 North King 
segment is upstream of the I5 North Seattle segment. The I5 
Everett segment is considerably farther north and does not 
experience spillback from North King or North Seattle seg
ments, except in extreme cases.

Figure E.12 illustrates how wind affects the SR 520 bridge 
westbound, and Figure E.13 illustrates the I90 eastbound 
bridge section. In both figures it can be seen that the primary 
effects of wind are in the peak periods when traffic volumes 
are highest. If the same graphics were presented with a higher 
wind speed, more impacts would be seen in the middle of the 
day, especially on SR 520.

In Figure E.13, wind appears to have a significant effect on 
expected travel times during the later portion of the a.m. peak 
period, but not on the earlier portion of the peak. This differ
ence helps explain why the difference in mean travel times 
shown in Table E.9 is not statistically significant. In the end, 
sustained wind speeds of 16 mph were used as the primary 
split between windy and notwindy conditions. Adopting a 
different definition would marginally change the travel times 
associated with windy and notwindy conditions for some 
corridors, but would not change the ultimate conclusions of 
the study.

Table E.9. Example Effects of Wind on Travel Times by Corridor

Route

Mean Travel 
Time A.M. Peak 

(s)

Difference
Statistically 
Significant?

Mean Travel 
Time P.M. Peak 

(s)

Difference
Statistically 
Significant?

With 
Winda

Without 
Windb

With 
Wind

Without 
Wind

I-5 Everett southbound 190 207 -17 No 191 209 -18 No

I-5 North King southbound 759 690 68 Yes 400 422 -22 No

I-5 North Seattle southbound 751 606 145 Yes 926 686 239 Yes

I-5 South northbound 1,671 1,073 598 Yes 649 649 0 No

SR 520 Seattle westbound 1,020 638 382 Yes 1,548 1,052 495 Yes

I-90 Bridge eastbound 425 410 15 No 543 437 106 Yes

I-90 Seattle eastbound 198 169 29 Yes 151 115 36 Yes

SR 520 Seattle westbound, 
10 mph wind speed

781 626 154 Yes 1,093 1,049 44 Yes

I-90 Bridge eastbound,  
10 mph wind speed

434 407 27 No 431 441 -10 No

I-90 Seattle eastbound,  
10 mph wind speed

174 169 5 No 107 118 -12 No

a Sustained wind speed >16 mph.
b Sustained wind speed ≤16 mph.
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Analysis of Fog Effects

The analysis of the effects of fog was problematic, as fog 
tends to be highly localized. Thus, while the airport may be 
very foggy (to the point that landings and take-offs are 
restricted for lack of visibility), at the same time I-5, pass-
ing within 2 miles of SeaTac, may have clear visibility. As a 
result, the fog variable that described conditions only at 
SeaTac airport was not useful in identifying specific fog-
related delays.

References
1. Scholz, F. Confidence Bounds & Intervals for Parameters Relating to 

the Binomial, Negative Binomial, Poisson and Hypergeometric Distri-
butions: With Applications to Rare Events. University of Washington, 
Seattle, 2008. www.stat.washington.edu/fritz/DATAFILES498B2008/
ConfidenceBounds.pdf.

2. Scholz, F. W., and M. A. Stephens. K-Sample Anderson–Darling 
Tests. Journal of the American Statistical Association, Vol. 82, No. 399, 
1987, pp. 918–924. www.jstor.org/discover/10.2307/2288805?uid
=3739960&uid=2&uid=4&uid=3739256&sid=21101238038017.

Figure E.12. Mean travel times by time of day in wind and no-wind  
conditions on SR 520 westbound (Bellevue toward Seattle).

Figure E.13. Mean travel times by time of day in wind and no-wind  
conditions on I-90 bridge section eastbound (Seattle toward Bellevue).

http://www.stat.washington.edu/fritz/DATAFILES498B2008/ConfidenceBounds.pdf
http://www.jstor.org/discover/10.2307/2288805=3739960&uid=2&uid=4&uid=3739256&sid=21101238038017
http://www.stat.washington.edu/fritz/DATAFILES498B2008/ConfidenceBounds.pdf
http://www.jstor.org/discover/10.2307/2288805=3739960&uid=2&uid=4&uid=3739256&sid=21101238038017
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A p p e n d i x  F

Two sets of statistical comparisons were made regarding 
the end of congestion. One was made assuming a normal 
distribution. The other was made using the Anderson– 
Darling K-sample test, a nonparametric test that allows a 
comparison of two populations with skewed distributions 
(1, pp. 918–924). Tables F.1 through F.3 show the results for 
the a.m. and p.m. periods. The boldface numbers in the tables 

indicate statistically significant differences at the 95% con-
fidence level, and italic numbers indicate statistically signifi-
cant differences at the 90% confidence level. The results are 
generally very similar, with many of the observed differ-
ences easily attributable to how these two types of tests treat 
the importance of outliers given the total number of data 
points in the samples being tested.

Statistics Related to the End of Congestion:  
Seattle Analysis

Table F.1. p-Values for Comparing Ending Times of Congestion Under  
Disruptive Versus Nondisruptive Conditions

Route

A.M. Peak Period P.M. Peak Period

Crash 
Influenced

Incident 
Influenced

Either Crash 
or Incident 
Influenced

Crash 
Influenced

Incident 
Influenced

Either Crash  
or Incident 
Influenced

I-405 Bellevue northbound 0.00 0.00 0.00 0.00 0.40 0.01

I-405 Bellevue southbound 0.00 0.00 0.00 0.03 0.20 0.11

I-405 Eastgate northbound 0.01 0.21 0.03 0.00 0.47 0.02

I-405 Eastgate southbound 0.01 0.20 0.01 0.03 0.49 0.11

I-405 Kennydale northbound 0.00 0.16 0.00 0.01 0.25 0.01

I-405 Kennydale southbound 0.00 (0.06) 0.00 0.63 0.32 0.60

I-405 Kirkland northbound 0.68 0.00 0.01 (0.07) 0.62 0.04

I-405 Kirkland southbound 0.02 0.01 0.03 0.00 0.00 0.00

I-405 North northbound 0.00 0.03 0.00 0.00 0.55 0.01

I-405 North southbound 0.00 0.00 0.00 0.00 0.44 0.01

I-405 South northbound 0.00 0.02 0.00 0.11 0.34 0.24

I-405 South southbound 0.01 0.01 0.00 0.48 0.32 0.43

I-5 Everett northbound 0.00 0.61 0.00 0.00 0.01 0.00

I-5 Everett southbound 0.00 0.38 0.00 0.00 0.00 0.00

I-5 Lynnwood northbound 0.45 0.69 0.70 0.21 0.19 0.12

(continued on next page)
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I-5 Lynnwood southbound 0.01 0.01 0.01 0.00 0.21 0.00

I-5 North King northbound 0.69 0.51 0.77 (0.09) 0.54 0.13

I-5 North King southbound 0.03 0.02 0.04 0.00 (0.06) 0.00

I-5 Seattle CBD northbound 0.55 0.51 0.00 0.42 0.54 0.00

I-5 Seattle CBD southbound 0.00 0.48 0.00 0.55 0.50 0.54

I-5 Seattle North northbound 0.55 0.51 0.00 0.42 0.54 0.00

I-5 Seattle North southbound 0.00 0.24 0.00 0.01 0.11 (0.06)

I-5 South northbound (0.08) 0.49 0.30 0.00 NA 0.00

I-5 South southbound 0.05 0.04 (0.05) 0.15 0.40 0.25

I-5 Tukwila northbound (0.10) 0.24 0.23 0.00 0.00 0.00

I-5 Tukwila southbound 0.00 0.55 0.00 0.00 0.01 0.00

I-90 Bellevue eastbound 0.69 0.69 0.85 0.01 0.16 0.02

I-90 Bellevue westbound 0.29 (0.06) (0.07) 0.00 0.00 0.00

I-90 Bridge eastbound 0.00 0.00 0.00 0.00 0.01 0.00

I-90 Bridge westbound 0.00 0.02 0.00 0.02 0.00 0.00

I-90 Issaquah eastbound 0.69 0.69 0.85 0.66 0.29 0.60

I-90 Issaquah westbound 0.00 0.51 0.00 NA NA NA

I-90 Seattle eastbound 0.00 0.37 0.00 (0.10) 0.35 0.17

I-90 Seattle westbound 0.00 0.05 0.00 0.63 0.30 0.58

SR 167 Auburn northbound 0.17 0.41 0.31 0.41 0.46 0.53

SR 167 Auburn southbound 0.00 0.00 0.00 (0.10) 0.39 0.23

SR 167 Renton northbound 0.00 0.00 0.00 0.00 0.04 0.00

SR 167 Renton southbound 0.00 0.00 0.00 0.16 0.20 0.12

SR 520 Redmond eastbound 0.46 0.65 0.69 0.44 0.63 0.67

SR 520 Redmond westbound 0.00 0.00 0.00 0.00 0.00 0.00

SR 520 Seattle eastbound 0.00 0.00 0.00 0.01 0.25 0.02

SR 520 Seattle westbound 0.00 0.12 0.00 0.05 0.53 0.11

Note: CBD = central business district.

Table F.1. p-Values for Comparing Ending Times of Congestion Under  
Disruptive Versus Nondisruptive Conditions (continued)

Route

A.M. Peak Period P.M. Peak Period

Crash 
Influenced

Incident 
Influenced

Either Crash 
or Incident 
Influenced

Crash 
Influenced

Incident 
Influenced

Either Crash  
or Incident 
Influenced
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Table F.2. Comparison of Ending Times of Congestion for A.M. Peak Period

Route
Nonevent End of 
Congestion Time

Added Time if 
Incident Occurs

Added Time if  
Crash Occurs

Z Score for Incident 
Comparison

Z Score for Crash 
Comparison

I-405 Kennydale northbounda 11:47 0:34 1:33 1.265 3.368

I-405 North southbound 9:56 1:27 2:09 2.209 3.101

I-5 North King southbounda 11:06 0:48 1:29 2.472 3.321

I-5 Seattle CBD northbound 12:15 (0:42) 1:20 NAb NAb

I-405 Kirkland southbound 10:16 0:56 1:14 2.590 2.732

SR 520 Seattle eastbound 11:54 6:02 6:53 4.820 5.752

I-5 Lynnwood southbound 10:06 1:57 1:39 3.048 2.659

I-5 South northbound 9:16 0:12 0:22 1.204 2.344

SR 167 Auburn northbounda 11:40 0:51 0:59 1.318 1.576

I-405 Eastgate northbounda 11:38 0:16 1:04 1.100 2.368

I-5 Seattle North southbound 9:38 1:10 4:58 2.650 7.531

I-405 Kennydale southboundc 9:08 1:19 1:23 1.674 2.083

I-405 South southboundc 12:46 3:12 2:17 3.171 2.782

SR 167 Renton northboundc 9:13 1:47 1:22 2.765 2.513

SR 520 Seattle westbounda 9:51 0:47 2:54 1.694 3.412

I-5 Tukwila northbound 10:06 0:14 0:32 1.103 1.778

I-90 Issaquah westbound 9:10 0:09 0:33 0.521 4.616

I-90 Bellevue westbound 9:26 0:13 (0:06) 1.607 -0.781

I-405 Bellevue northbounda 11:01 3:34 5:00 5.252 7.928

I-405 South northboundc 8:21 4:49 7:47 2.478 10.562

I-90 Seattle eastbound 8:45 0:05 1:05 0.317 5.102

I-90 Seattle westbound 7:35 0:42 1:52 1.238 8.146

I-90 Bridge eastbound 9:23 0:45 1:04 3.806 5.876

I-405 Bellevue southbounda 8:27 7:56 11:07 8.517 27.434

I-5 Everett southbound 7:08 0:06 1:06 1.975 2.398

I-90 Bridge westbound 8:04 0:26 1:30 2.048 3.518

I-5 Seattle CBD southbound 9:28 1:04 4:57 2.387 8.190

SR 167 Auburn southbound 8:58 7:29 9:59 8.068 30.022

I-405 Eastgate southbound 7:22 0:07 0:32 1.294 5.227

(continued on next page)
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SR 167 Renton southbound 9:42 7:33 7:30 7.033 4.957

I-5 Tukwila southbound 7:08 0:05 7:51 0.719 1.026

SR 520 Redmond westbound 7:09 0:56 2:10 2.266 2.888

I-405 North northbound 7:56 0:12 1:47 1.882 1.562

I-5 Everett northbound 7:05 0:01 0:14 1.202 1.928

I-5 Lynnwood northbound 7:13 (0:01) 0:20 (0.403) 0.709

I-5 Seattle North northbound 7:07 0:04 (0:02) 1.332 NAd

I-90 Bellevue eastbound 7:05 (0:00) (0:00) (1.380) NAd

I-5 South southbound 7:07 0:08 (0:00) 1.047 (0.204)

I-405 Kirkland northbound 7:05 0:05 (0:00) 1.882 (1.686)

SR 520 Redmond eastbound 7:05 (0:00) (0:00) (0.267) (2.015)

I-90 Issaquah eastbound 7:05 (0:00) (0:00) (1.381) NAd

I-5 North King northbound 7:05 (0:00) (0:00) (1.324) (1.324)

a  Uses a 10% travel time increase as the point at which congestion has abated rather than the 5% norm.
b  Too few nondisrupted days occurred to compute a test statistic.
c  Uses a 20% travel time increase as the point at which congestion has abated rather than the 5% norm.
d  Too few crash days occurred to compute a test statistic.

Table F.2. Comparison of Ending Times of Congestion for A.M. Peak Period (continued)

Route
Nonevent End of 
Congestion Time

Added Time if 
Incident Occurs

Added Time if  
Crash Occurs

Z Score for Incident 
Comparison

Z Score for Crash 
Comparison

Table F.3. Comparison of Ending Times of Congestion for P.M. Peak Period

Nonevent End of 
Congestion Time

Added Time if 
Incident Occurs

Added Time if 
Crash Occurs

Z Score for Incident 
Comparison

Z Score for Crash 
Comparison

I-405 Bellevue northbound 18:09 0:07 0:27 1.264 3.927

I-405 Bellevue southbound 19:44 0:13 0:20 1.943 2.629

I-405 Eastgate northbound 16:24 0:05 0:47 0.351 2.221

I-405 Eastgate southbound 19:12 0:00 0:15 0.064 2.377

I-405 Kennydale northbound 18:05 0:17 0:23 2.323 2.006

I-405 Kennydale southbound 19:27 (0:01) 0:00 (0.195) 0.137

I-405 Kirkland northbound 19:03 0:01 0:11 0.246 2.196

I-405 Kirkland southbound 16:55 1:00 1:21 4.686 4.849

I-405 North northbound 19:18 (0:05) 0:14 (0.799) 3.236

I-405 North southbound 17:40 (0:11) 0:46 (0.919) 3.611

I-405 South northbound 20:41 0:21 0:17 0.940 1.698

I-405 South southbound 19:36 (0:03) 0:05 (0.336) 0.776

I-5 Everett northbound 17:08 0:28 0:58 2.174 4.216

I-5 Everett southbound 16:35 0:24 0:57 2.979 4.441

I-5 Lynnwood northbound 19:00 0:08 (0:07) 1.320 (1.082)

I-5 Lynnwood southbound 17:21 0:12 1:09 0.922 7.154

I-5 North King northbound 18:55 0:04 0:12 0.741 2.092

I-5 North King southbound 16:47 0:29 1:57 2.424 6.575

I-5 Seattle CBD northbound 18:53 (0:06) 0:13 (0.490) 1.020

(continued on next page)
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I-5 Seattle CBD southbound 18:49 0:06 0:13 0.271 0.520

I-5 Seattle North northbound 18:34 0:05 0:07 0.726 1.093

I-5 Seattle North southbound 18:20 0:16 0:31 1.513 2.481

I-5 South northbound 16:05 0:00 0:45 0.000 1.914

I-5 South southbound 18:08 0:09 0:19 1.179 2.168

I-5 Tukwila northbound 16:23 0:23 1:56 2.329 5.897

I-5 Tukwila southbound 17:18 0:21 0:51 2.083 4.972

I-90 Bellevue eastbound 16:35 0:21 1:02 1.131 1.433

I-90 Bellevue westbound 16:13 1:21 2:10 2.078 8.804

I-90 Bridge eastbound 18:18 0:22 0:35 3.196 4.751

I-90 Bridge westbound 18:25 0:34 0:48 2.921 4.299

I-90 Issaquah eastbound 16:10 (0:05) (0:05) (2.858) NAa

I-90 Issaquah westbound 16:05 0:00 0:00 0.000 0.000

I-90 Seattle eastbound 17:07 (1:02) 1:05 NAb 6.457

I-90 Seattle westbound 17:29 0:19 0:07 1.274 0.219

SR 167 Auburn northbound 17:31 (0:08) (0:31) (0.641) NAa

SR 167 Auburn southbound 18:47 0:08 0:08 1.799 2.716

SR 167 Renton northbound 17:22 0:27 0:57 1.973 4.550

SR 167 Renton southbound 18:47 0:08 0:16 1.293 2.853

SR 520 Redmond eastbound 19:09 0:05 (0:07) 0.835 (0.841)

SR 520 Redmond westbound 16:51 1:24 1:53 2.652 7.432

SR 520 Seattle eastbound 18:52 0:11 0:22 1.654 3.232

SR 520 Seattle westbound 20:00 (0:01) 0:12 (0.206) 1.727

a Too few crash days occurred to compute a test statistic.
b Too few incident days occurred to compute a test statistic.

Table F.3. Comparison of Ending Times of Congestion for P.M. Peak Period (continued)

Nonevent End of 
Congestion Time

Added Time if 
Incident Occurs

Added Time if 
Crash Occurs

Z Score for Incident 
Comparison

Z Score for Crash 
Comparison

Reference
1. Scholz, F. W., and M. A. Stephens. K-Sample Anderson–Darling 

Tests. Journal of the American Statistical Association, Vol. 82, No. 399, 
1987, pp. 918–924. www.jstor.org/discover/10.2307/2288805?uid= 
3739960&uid=2&uid=4&uid=3739256&sid=21101238038017.

http://www.jstor.org/discover/10.2307/2288805?uid=3739960&uid=2&uid=4&uid=3739256&sid=21101238038017
http://www.jstor.org/discover/10.2307/2288805?uid=3739960&uid=2&uid=4&uid=3739256&sid=21101238038017
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A p p e n d i x  G

introduction

The key principle for constructing reliability metrics for use 
in Project L03 was that the metrics had to be based on the 
measurement of travel times over an appreciable amount of 
time and meaningful highway distances. Travel times are eas-
ily relatable to nontechnical audiences, and once measured 
they can be transformed into a wide variety of additional 
metrics. The Travel Time Index (TTI) was used as the pri-
mary congestion metric in Project L03 for various reliability 
estimation and prediction models.

Three reasons exist for this choice. First, because study sec-
tions vary in length, using raw travel times is misleading, and 
the travel times must be normalized for distance. As a unitless 
index, the TTI is normalized. Second, the TTI is already in wide-
spread use in congestion performance monitoring. Third, the 
moments and derivative measures derived from the TTI turn 
out to be identical to those of the travel time distribution for a 
particular road section and time slice. An alternative metric to 
the TTI is the travel rate (the inverse of space mean speed, in 
minutes per mile).

For the statistical modeling, moments from the distribu-
tion of TTIs were used as the dependent variables (e.g., the 
80th percentile TTI). As shown below, these can be easily con-
verted to travel times, and these travel times can be used to 
create additional performance metrics (e.g., delay).

Calculation of Travel  
Time index

The starting point for the research was to transform field data 
into travel time–based metrics. The first step in this process 
was to define highway sections over which travel time statis-
tics would be calculated. The following principles were used 
in defining sections:

•	 Sections should be relatively homogenous in terms of traf-
fic and geometric conditions. Multiple interchanges are 

allowed as long as they do not provide for major drops or 
additions in traffic volumes along the section;

•	 Sections should represent portions of trips taken by trav-
elers. Typical distances for urban freeway sections are 3 to 
6 miles; and

•	 Major bottlenecks, defined as major freeway-to-freeway 
interchanges, can be present at the downstream end of 
the section, but never in midsection.

The majority of data that were available came from urban 
freeway surveillance systems, specifically, point detection of 
volumes and speeds from closely spaced equipment. These 
point measurements were converted to travel times over 
fixed highway distances with a method in widespread use by 
researchers and practitioners: it is assumed that the point 
speed measures the travel time over a distance half the dis-
tance to the nearest upstream and downstream detectors. 
This assumption works well if detector spacing is close (i.e., 
0.5-mile spacing or less). Figure G.1 shows the process for 
computing section travel times from individual detectors; this 
was done at a 5-minute time interval level. For each detector 
zone, vehicle miles traveled (VMT) and vehicle hours traveled 
(VHT) were computed:

VMT VOLUME DetectorZoneLength G.= � ( )1

VHT VMT Min FreeFlowSpeed Speed G.= ( )( ), ( )2

When aggregating to the section level, at least half of the 
detectors had to report valid data for each of the 5-minute 
periods; otherwise the data were set to missing. If less than 
half of the detector data was missing, VMT and VHT were 
factored up based on the ratio of total section length to the 
sum of the lengths of the individual detector zones.

For every 5-minute interval in the year, total VMT and 
VHT were computed. From these, key performance measures 
were computed:

Computation of Travel Time Metrics
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of the study was to measure congestion, not high speeds. If 
speeds were not capped, the resulting statistics would be 
biased because of the credit given to high speeds. However, 
the original data have been preserved for future examination 
by researchers who may wish to remove this restriction.

The congestion metrics were computed for each 5-minute 
period in a day over the course of a year. For any given analysis 
time slice (e.g., peak hour, peak period), a TTI distribution and 
its moments were computed as the VMT-weighted average of 
all the 5-minute TTIs in that time slice for the entire year. The 
various moments of the TTI distributions (e.g., 95th percen-
tile TTI) were then used in the statistical modeling.

SpaceMeanSpeed VMT VHT G.= ( )3

TravelRate 1 SpaceMeanSpeed G.= ( )4

TTI MAX 1 TravelRate FreeFlowSpeed G= ( )[ ]( ). , (0 1 ..5)

Because the bases for the measures were total VMT and VHT, 
the process was self-weighting. For urban freeways, FreeFlow-
Speed was fixed at 60 mph. Note that TTI was not allowed to 
be lower than 1.0; that is, speeds higher than 60 mph were set 
to 60 mph. This adjustment was made because the purpose 

Figure G.1. Converting spot speeds to section travel times.

Source: Turner, S., R. Margiotta, and T. Lomax, Monitoring Urban Freeways in 2003: Current Conditions
and Trends from Archived Operations Data. Report No. FHWA-HOP-05-018. December 2004.
http://mobility.tamu.edu/mmp/FHWA-HOP-05-018/.

http://mobility.tamu.edu/mmp/FHWA-HOP-05-018/
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Converting predicted TTi 
percentiles to Other Metrics

TTI percentiles can be thought of as a ratio comparing the 
travel time for a given percentile with the travel time under 
free-flow conditions. For example, a 95th percentile TTI of 
1.8 means that the 95th percentile travel time is 80% higher 
than the free-flow travel time. Therefore, the travel time asso-
ciated with any percentile can be computed as

TravelTime TTI TravelTime G.ffn n= � ( )6

where n is the percentile and TravelTimeff is the travel time 
under free-flow conditions.

Travel times can be combined with other data to compute 
other congestion-related metrics such as vehicle hours of delay:

SpaceMeanSpeed SectionLength TravelTime G.= ( )7

Delay
SectionLength

SpaceMeanSpeed

Sec= 





− ttionLength

FreeFlowSpeed

Volume













� (( )G.8

Percentiles for the various travel times can also be used to 
compute the Buffer Index and Skew Index:

Buffer Index

95th percentile travel time
mean t= − rravel time

mean travel time
G.







( )9

SkewIndex

90th percentile travel time
mediantr= − aavel time

median travel time
10th percent







− iile time

G.






( )10

As an example, consider the data in Table G.1, which were 
derived from a few Atlanta study sections for 2007. Both the 
travel time and TTI distributions were developed by follow-
ing the procedure discussed above. Applying Equation 6 for 
the 95th percentile for Section 2,

95th percentile travel time 95th percentile= TTI

free-flow travel time�

�=

=

1 837 5 840

10

. .

.7728

which matches the actual 95th percentile travel time devel-
oped straight from the data (accounting for slight round-off 
error).

Note also that the Buffer and Skew Indices can be computed 
either from the travel times or TTIs. Again for Section 2, the 
Buffer Index using the TTI distribution is

1 837 1 337 1 337 0 374. . . .−( ) =

And with the pure travel times is

10 727 7 805 7 805 0 374. . . . .−( ) =

Table G.1. Travel Time and TTI Distributions for A.M. Peak Hour, Selected Atlanta Study Sections

Travel Time (min) TTI

Section Free-Flow
10th 

Percentile Median Mean
95th 

Percentile
10th 

Percentile Median Mean
95th 

Percentile

1 5.510 5.510 5.523 5.562 5.629 1.000 1.002 1.009 1.022

2 5.840 5.846 7.601 7.805 10.727 1.001 1.302 1.337 1.837

3 4.970 5.091 7.548 7.580 10.996 1.024 1.519 1.525 2.213

4 4.550 4.560 5.081 5.411 7.342 1.002 1.117 1.189 1.614

5 6.860 6.883 10.113 10.013 13.152 1.003 1.474 1.460 1.917

Note: Section 1 is a radial freeway leading away from the I-285 Beltway; its peak is in the afternoon.



253

A p p e n d i x  H

The original equations that predicted the percentiles of the 
Travel Time Index (TTI) as a function of the mean TTI used 
a power function. This form fit the data extremely well when 
the mean TTI was less than 2.0. This is where the majority of 
the data points were distributed. However, especially for 
planning applications, mean TTIs well over 2.0 (i.e., average 
annual speeds less than 30 mph for the section) are possible. 
It was observed that the relationship flattened at the upper 
end of the data, and this flattening was more pronounced for 
the higher percentiles. Therefore, a natural log relationship 
was chosen as a more appropriate model form:

Y a x= + ∗ ( )1 1ln ( . )H

The original power (exponential) relationship for the stan-
dard deviation as a function of the mean was verified, but the 
coefficients were reestimated using an expanded data set.

The original functional form for the prediction of the per-
centage of trips on-time at different speed thresholds was also 
assumed to be a power fit, but further investigation revealed 
that a negative exponential form fit the on-time measures for 
50 and 45 mph:

Y a x= ∗ −[ ]( )exp ( . )1 2H

A sigmoidal function fit the on-time measure for 30 mph 
extremely well:

Y a
b a

w x x
= + −

+ ∗ −[ ]( )1 0
3

exp
( . )H

Note that MeanTTI in the predictive equations is the over-
all annual average TTI, which includes the effect of demand 
fluctuations and disruptions. If analysts only have an estimate 
of the recurring-only average TTI, it should be adjusted 
upward using the original L03 equation:

MeanTTI RecurringMeanTTI H1.2204= ∗1 0274 4. ( . )

More work remains to be done to make this adjustment 
more sensitive to the effect of disruptions.

Revised section-level equations are as follows:

95 1 3 6700 5th percentile TTI MeanTTI H= + ∗ ( ). ln ( . )

90 1 2 7809 6th percentile TTI MeanTTI H= + ∗ ( ). ln ( . )

80 1 2 1406 7th percentile TTI MeanTTI H= + ∗ ( ). ln ( . )

StdDevTTI MeanTTI H= ∗ −( )0 71 1 8
0 56

. ( . )
.

PctTripsOnTime50mph MeanTTI= − ∗ −[ ]( )e 2 0570 1. (HH. )9

PctTripsOnTime45mph MeanTTI= − ∗ −[ ]( )e 1 5115 1. (HH. )10

PctTripsOnTime30mph Me= + + ∗0 333 0 672 1 5 0366. . .e aanTTI

H

−[ ]( )( )[ ]1 8256

11

.

( . )

Revised Data-Poor Equations
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Figure H.1. Relationship between mean TTI and 95th percentile TTI:  
predicted model superimposed on the data.

Figure H.2. Relationship between mean TTI and standard deviation of TTI:  
predicted model superimposed on the data.
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Figure H.3. Relationship between mean TTI and percentage of trips with travel 
speeds >–50 mph: predicted model superimposed on the data.

Figure H.4. Relationship between mean TTI and percentage of trips with travel 
speeds >–45 mph: predicted model superimposed on the data.
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Figure H.5. Relationship between mean TTI and percentage of trips with travel 
speeds >–30 mph: predicted model superimposed on the data.
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